Description: 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrltle | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → 𝐴 ≤ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc | ⊢ ( 𝐴 < 𝐵 → ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) | |
| 2 | xrleloe | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) ) | |
| 3 | 1 2 | imbitrrid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → 𝐴 ≤ 𝐵 ) ) |