Description: 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | xrltle | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → 𝐴 ≤ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc | ⊢ ( 𝐴 < 𝐵 → ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) | |
2 | xrleloe | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) ) | |
3 | 1 2 | syl5ibr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → 𝐴 ≤ 𝐵 ) ) |