Metamath Proof Explorer


Theorem xrltled

Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses xrltled.a ( 𝜑𝐴 ∈ ℝ* )
xrltled.b ( 𝜑𝐵 ∈ ℝ* )
xrltled.altb ( 𝜑𝐴 < 𝐵 )
Assertion xrltled ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 xrltled.a ( 𝜑𝐴 ∈ ℝ* )
2 xrltled.b ( 𝜑𝐵 ∈ ℝ* )
3 xrltled.altb ( 𝜑𝐴 < 𝐵 )
4 xrltle ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵𝐴𝐵 ) )
5 1 2 4 syl2anc ( 𝜑 → ( 𝐴 < 𝐵𝐴𝐵 ) )
6 3 5 mpd ( 𝜑𝐴𝐵 )