Metamath Proof Explorer


Theorem xrltned

Description: 'Less than' implies not equal. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses xrltned.1 ( 𝜑𝐴 ∈ ℝ* )
xrltned.2 ( 𝜑𝐵 ∈ ℝ* )
xrltned.3 ( 𝜑𝐴 < 𝐵 )
Assertion xrltned ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 xrltned.1 ( 𝜑𝐴 ∈ ℝ* )
2 xrltned.2 ( 𝜑𝐵 ∈ ℝ* )
3 xrltned.3 ( 𝜑𝐴 < 𝐵 )
4 1 2 3 xrgtned ( 𝜑𝐵𝐴 )
5 4 necomd ( 𝜑𝐴𝐵 )