Metamath Proof Explorer
Description: 'Less than' implies not equal. (Contributed by Glauco Siliprandi, 21-Nov-2020)
|
|
Ref |
Expression |
|
Hypotheses |
xrltned.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
|
|
xrltned.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
|
|
xrltned.3 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
|
Assertion |
xrltned |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
xrltned.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
2 |
|
xrltned.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
3 |
|
xrltned.3 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
4 |
1 2 3
|
xrgtned |
⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
5 |
4
|
necomd |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |