Metamath Proof Explorer


Theorem xrltnle

Description: "Less than" expressed in terms of "less than or equal to", for extended reals. (Contributed by NM, 6-Feb-2007)

Ref Expression
Assertion xrltnle ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 xrlenlt ( ( 𝐵 ∈ ℝ*𝐴 ∈ ℝ* ) → ( 𝐵𝐴 ↔ ¬ 𝐴 < 𝐵 ) )
2 1 con2bid ( ( 𝐵 ∈ ℝ*𝐴 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵𝐴 ) )
3 2 ancoms ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵𝐴 ) )