Metamath Proof Explorer


Theorem xrltnled

Description: 'Less than' in terms of 'less than or equal to'. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses xrltnled.1 ( 𝜑𝐴 ∈ ℝ* )
xrltnled.2 ( 𝜑𝐵 ∈ ℝ* )
Assertion xrltnled ( 𝜑 → ( 𝐴 < 𝐵 ↔ ¬ 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 xrltnled.1 ( 𝜑𝐴 ∈ ℝ* )
2 xrltnled.2 ( 𝜑𝐵 ∈ ℝ* )
3 xrltnle ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵𝐴 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 < 𝐵 ↔ ¬ 𝐵𝐴 ) )