| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elxr | 
							⊢ ( 𝐴  ∈  ℝ*  ↔  ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞  ∨  𝐴  =  -∞ ) )  | 
						
						
							| 2 | 
							
								
							 | 
							elxr | 
							⊢ ( 𝐵  ∈  ℝ*  ↔  ( 𝐵  ∈  ℝ  ∨  𝐵  =  +∞  ∨  𝐵  =  -∞ ) )  | 
						
						
							| 3 | 
							
								
							 | 
							ltnsym | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  →  ¬  𝐵  <  𝐴 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							rexr | 
							⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ* )  | 
						
						
							| 5 | 
							
								
							 | 
							pnfnlt | 
							⊢ ( 𝐴  ∈  ℝ*  →  ¬  +∞  <  𝐴 )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							syl | 
							⊢ ( 𝐴  ∈  ℝ  →  ¬  +∞  <  𝐴 )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  =  +∞ )  →  ¬  +∞  <  𝐴 )  | 
						
						
							| 8 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝐵  =  +∞  →  ( 𝐵  <  𝐴  ↔  +∞  <  𝐴 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  =  +∞ )  →  ( 𝐵  <  𝐴  ↔  +∞  <  𝐴 ) )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							mtbird | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  =  +∞ )  →  ¬  𝐵  <  𝐴 )  | 
						
						
							| 11 | 
							
								10
							 | 
							a1d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  =  +∞ )  →  ( 𝐴  <  𝐵  →  ¬  𝐵  <  𝐴 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							nltmnf | 
							⊢ ( 𝐴  ∈  ℝ*  →  ¬  𝐴  <  -∞ )  | 
						
						
							| 13 | 
							
								4 12
							 | 
							syl | 
							⊢ ( 𝐴  ∈  ℝ  →  ¬  𝐴  <  -∞ )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  =  -∞ )  →  ¬  𝐴  <  -∞ )  | 
						
						
							| 15 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝐵  =  -∞  →  ( 𝐴  <  𝐵  ↔  𝐴  <  -∞ ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  =  -∞ )  →  ( 𝐴  <  𝐵  ↔  𝐴  <  -∞ ) )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							mtbird | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  =  -∞ )  →  ¬  𝐴  <  𝐵 )  | 
						
						
							| 18 | 
							
								17
							 | 
							pm2.21d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  =  -∞ )  →  ( 𝐴  <  𝐵  →  ¬  𝐵  <  𝐴 ) )  | 
						
						
							| 19 | 
							
								3 11 18
							 | 
							3jaodan | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∨  𝐵  =  +∞  ∨  𝐵  =  -∞ ) )  →  ( 𝐴  <  𝐵  →  ¬  𝐵  <  𝐴 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							pnfnlt | 
							⊢ ( 𝐵  ∈  ℝ*  →  ¬  +∞  <  𝐵 )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantl | 
							⊢ ( ( 𝐴  =  +∞  ∧  𝐵  ∈  ℝ* )  →  ¬  +∞  <  𝐵 )  | 
						
						
							| 22 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝐴  =  +∞  →  ( 𝐴  <  𝐵  ↔  +∞  <  𝐵 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantr | 
							⊢ ( ( 𝐴  =  +∞  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  <  𝐵  ↔  +∞  <  𝐵 ) )  | 
						
						
							| 24 | 
							
								21 23
							 | 
							mtbird | 
							⊢ ( ( 𝐴  =  +∞  ∧  𝐵  ∈  ℝ* )  →  ¬  𝐴  <  𝐵 )  | 
						
						
							| 25 | 
							
								24
							 | 
							pm2.21d | 
							⊢ ( ( 𝐴  =  +∞  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  <  𝐵  →  ¬  𝐵  <  𝐴 ) )  | 
						
						
							| 26 | 
							
								2 25
							 | 
							sylan2br | 
							⊢ ( ( 𝐴  =  +∞  ∧  ( 𝐵  ∈  ℝ  ∨  𝐵  =  +∞  ∨  𝐵  =  -∞ ) )  →  ( 𝐴  <  𝐵  →  ¬  𝐵  <  𝐴 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							rexr | 
							⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℝ* )  | 
						
						
							| 28 | 
							
								
							 | 
							nltmnf | 
							⊢ ( 𝐵  ∈  ℝ*  →  ¬  𝐵  <  -∞ )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							syl | 
							⊢ ( 𝐵  ∈  ℝ  →  ¬  𝐵  <  -∞ )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantl | 
							⊢ ( ( 𝐴  =  -∞  ∧  𝐵  ∈  ℝ )  →  ¬  𝐵  <  -∞ )  | 
						
						
							| 31 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝐴  =  -∞  →  ( 𝐵  <  𝐴  ↔  𝐵  <  -∞ ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantr | 
							⊢ ( ( 𝐴  =  -∞  ∧  𝐵  ∈  ℝ )  →  ( 𝐵  <  𝐴  ↔  𝐵  <  -∞ ) )  | 
						
						
							| 33 | 
							
								30 32
							 | 
							mtbird | 
							⊢ ( ( 𝐴  =  -∞  ∧  𝐵  ∈  ℝ )  →  ¬  𝐵  <  𝐴 )  | 
						
						
							| 34 | 
							
								33
							 | 
							a1d | 
							⊢ ( ( 𝐴  =  -∞  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  →  ¬  𝐵  <  𝐴 ) )  | 
						
						
							| 35 | 
							
								
							 | 
							mnfxr | 
							⊢ -∞  ∈  ℝ*  | 
						
						
							| 36 | 
							
								
							 | 
							pnfnlt | 
							⊢ ( -∞  ∈  ℝ*  →  ¬  +∞  <  -∞ )  | 
						
						
							| 37 | 
							
								35 36
							 | 
							ax-mp | 
							⊢ ¬  +∞  <  -∞  | 
						
						
							| 38 | 
							
								
							 | 
							breq12 | 
							⊢ ( ( 𝐵  =  +∞  ∧  𝐴  =  -∞ )  →  ( 𝐵  <  𝐴  ↔  +∞  <  -∞ ) )  | 
						
						
							| 39 | 
							
								37 38
							 | 
							mtbiri | 
							⊢ ( ( 𝐵  =  +∞  ∧  𝐴  =  -∞ )  →  ¬  𝐵  <  𝐴 )  | 
						
						
							| 40 | 
							
								39
							 | 
							ancoms | 
							⊢ ( ( 𝐴  =  -∞  ∧  𝐵  =  +∞ )  →  ¬  𝐵  <  𝐴 )  | 
						
						
							| 41 | 
							
								40
							 | 
							a1d | 
							⊢ ( ( 𝐴  =  -∞  ∧  𝐵  =  +∞ )  →  ( 𝐴  <  𝐵  →  ¬  𝐵  <  𝐴 ) )  | 
						
						
							| 42 | 
							
								
							 | 
							xrltnr | 
							⊢ ( -∞  ∈  ℝ*  →  ¬  -∞  <  -∞ )  | 
						
						
							| 43 | 
							
								35 42
							 | 
							ax-mp | 
							⊢ ¬  -∞  <  -∞  | 
						
						
							| 44 | 
							
								
							 | 
							breq12 | 
							⊢ ( ( 𝐴  =  -∞  ∧  𝐵  =  -∞ )  →  ( 𝐴  <  𝐵  ↔  -∞  <  -∞ ) )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							mtbiri | 
							⊢ ( ( 𝐴  =  -∞  ∧  𝐵  =  -∞ )  →  ¬  𝐴  <  𝐵 )  | 
						
						
							| 46 | 
							
								45
							 | 
							pm2.21d | 
							⊢ ( ( 𝐴  =  -∞  ∧  𝐵  =  -∞ )  →  ( 𝐴  <  𝐵  →  ¬  𝐵  <  𝐴 ) )  | 
						
						
							| 47 | 
							
								34 41 46
							 | 
							3jaodan | 
							⊢ ( ( 𝐴  =  -∞  ∧  ( 𝐵  ∈  ℝ  ∨  𝐵  =  +∞  ∨  𝐵  =  -∞ ) )  →  ( 𝐴  <  𝐵  →  ¬  𝐵  <  𝐴 ) )  | 
						
						
							| 48 | 
							
								19 26 47
							 | 
							3jaoian | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞  ∨  𝐴  =  -∞ )  ∧  ( 𝐵  ∈  ℝ  ∨  𝐵  =  +∞  ∨  𝐵  =  -∞ ) )  →  ( 𝐴  <  𝐵  →  ¬  𝐵  <  𝐴 ) )  | 
						
						
							| 49 | 
							
								1 2 48
							 | 
							syl2anb | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  <  𝐵  →  ¬  𝐵  <  𝐴 ) )  |