Metamath Proof Explorer


Theorem xrltso

Description: 'Less than' is a strict ordering on the extended reals. (Contributed by NM, 15-Oct-2005)

Ref Expression
Assertion xrltso < Or ℝ*

Proof

Step Hyp Ref Expression
1 xrlttri ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑥 < 𝑦 ↔ ¬ ( 𝑥 = 𝑦𝑦 < 𝑥 ) ) )
2 xrlttr ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ* ) → ( ( 𝑥 < 𝑦𝑦 < 𝑧 ) → 𝑥 < 𝑧 ) )
3 1 2 isso2i < Or ℝ*