| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxr |
⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
| 2 |
|
elxr |
⊢ ( 𝐶 ∈ ℝ* ↔ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) |
| 3 |
|
elxr |
⊢ ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
| 4 |
|
lttr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 5 |
4
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 6 |
5
|
an32s |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 7 |
|
rexr |
⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℝ* ) |
| 8 |
|
pnfnlt |
⊢ ( 𝐶 ∈ ℝ* → ¬ +∞ < 𝐶 ) |
| 9 |
7 8
|
syl |
⊢ ( 𝐶 ∈ ℝ → ¬ +∞ < 𝐶 ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 = +∞ ) → ¬ +∞ < 𝐶 ) |
| 11 |
|
breq1 |
⊢ ( 𝐵 = +∞ → ( 𝐵 < 𝐶 ↔ +∞ < 𝐶 ) ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 = +∞ ) → ( 𝐵 < 𝐶 ↔ +∞ < 𝐶 ) ) |
| 13 |
10 12
|
mtbird |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 = +∞ ) → ¬ 𝐵 < 𝐶 ) |
| 14 |
13
|
pm2.21d |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 = +∞ ) → ( 𝐵 < 𝐶 → 𝐴 < 𝐶 ) ) |
| 15 |
14
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 = +∞ ) → ( 𝐵 < 𝐶 → 𝐴 < 𝐶 ) ) |
| 16 |
15
|
adantld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 = +∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 17 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
| 18 |
|
nltmnf |
⊢ ( 𝐴 ∈ ℝ* → ¬ 𝐴 < -∞ ) |
| 19 |
17 18
|
syl |
⊢ ( 𝐴 ∈ ℝ → ¬ 𝐴 < -∞ ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ¬ 𝐴 < -∞ ) |
| 21 |
|
breq2 |
⊢ ( 𝐵 = -∞ → ( 𝐴 < 𝐵 ↔ 𝐴 < -∞ ) ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 ↔ 𝐴 < -∞ ) ) |
| 23 |
20 22
|
mtbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ¬ 𝐴 < 𝐵 ) |
| 24 |
23
|
pm2.21d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 → 𝐴 < 𝐶 ) ) |
| 25 |
24
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 → 𝐴 < 𝐶 ) ) |
| 26 |
25
|
adantrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 = -∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 27 |
6 16 26
|
3jaodan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 28 |
3 27
|
sylan2b |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 29 |
28
|
an32s |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 30 |
|
ltpnf |
⊢ ( 𝐴 ∈ ℝ → 𝐴 < +∞ ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 = +∞ ) → 𝐴 < +∞ ) |
| 32 |
|
breq2 |
⊢ ( 𝐶 = +∞ → ( 𝐴 < 𝐶 ↔ 𝐴 < +∞ ) ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 = +∞ ) → ( 𝐴 < 𝐶 ↔ 𝐴 < +∞ ) ) |
| 34 |
31 33
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 = +∞ ) → 𝐴 < 𝐶 ) |
| 35 |
34
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 = +∞ ) → 𝐴 < 𝐶 ) |
| 36 |
35
|
a1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 = +∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 37 |
|
nltmnf |
⊢ ( 𝐵 ∈ ℝ* → ¬ 𝐵 < -∞ ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 = -∞ ) → ¬ 𝐵 < -∞ ) |
| 39 |
|
breq2 |
⊢ ( 𝐶 = -∞ → ( 𝐵 < 𝐶 ↔ 𝐵 < -∞ ) ) |
| 40 |
39
|
adantl |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 = -∞ ) → ( 𝐵 < 𝐶 ↔ 𝐵 < -∞ ) ) |
| 41 |
38 40
|
mtbird |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 = -∞ ) → ¬ 𝐵 < 𝐶 ) |
| 42 |
41
|
pm2.21d |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 = -∞ ) → ( 𝐵 < 𝐶 → 𝐴 < 𝐶 ) ) |
| 43 |
42
|
adantld |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 = -∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 44 |
43
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 = -∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 45 |
29 36 44
|
3jaodan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 46 |
45
|
anasss |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 47 |
|
pnfnlt |
⊢ ( 𝐵 ∈ ℝ* → ¬ +∞ < 𝐵 ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ¬ +∞ < 𝐵 ) |
| 49 |
|
breq1 |
⊢ ( 𝐴 = +∞ → ( 𝐴 < 𝐵 ↔ +∞ < 𝐵 ) ) |
| 50 |
49
|
adantr |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ +∞ < 𝐵 ) ) |
| 51 |
48 50
|
mtbird |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ¬ 𝐴 < 𝐵 ) |
| 52 |
51
|
pm2.21d |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → 𝐴 < 𝐶 ) ) |
| 53 |
52
|
adantrd |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 54 |
53
|
adantrr |
⊢ ( ( 𝐴 = +∞ ∧ ( 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 55 |
|
mnflt |
⊢ ( 𝐶 ∈ ℝ → -∞ < 𝐶 ) |
| 56 |
55
|
adantl |
⊢ ( ( 𝐴 = -∞ ∧ 𝐶 ∈ ℝ ) → -∞ < 𝐶 ) |
| 57 |
|
breq1 |
⊢ ( 𝐴 = -∞ → ( 𝐴 < 𝐶 ↔ -∞ < 𝐶 ) ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝐴 = -∞ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐶 ↔ -∞ < 𝐶 ) ) |
| 59 |
56 58
|
mpbird |
⊢ ( ( 𝐴 = -∞ ∧ 𝐶 ∈ ℝ ) → 𝐴 < 𝐶 ) |
| 60 |
59
|
a1d |
⊢ ( ( 𝐴 = -∞ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 61 |
60
|
adantlr |
⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 62 |
|
mnfltpnf |
⊢ -∞ < +∞ |
| 63 |
|
breq12 |
⊢ ( ( 𝐴 = -∞ ∧ 𝐶 = +∞ ) → ( 𝐴 < 𝐶 ↔ -∞ < +∞ ) ) |
| 64 |
62 63
|
mpbiri |
⊢ ( ( 𝐴 = -∞ ∧ 𝐶 = +∞ ) → 𝐴 < 𝐶 ) |
| 65 |
64
|
a1d |
⊢ ( ( 𝐴 = -∞ ∧ 𝐶 = +∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 66 |
65
|
adantlr |
⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 = +∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 67 |
43
|
adantll |
⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 = -∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 68 |
61 66 67
|
3jaodan |
⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 69 |
68
|
anasss |
⊢ ( ( 𝐴 = -∞ ∧ ( 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 70 |
46 54 69
|
3jaoian |
⊢ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∧ ( 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 71 |
70
|
3impb |
⊢ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 72 |
2 71
|
syl3an3b |
⊢ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 73 |
1 72
|
syl3an1b |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |