Metamath Proof Explorer


Theorem xrlttri3

Description: Trichotomy law for 'less than' for extended reals. (Contributed by NM, 9-Feb-2006)

Ref Expression
Assertion xrlttri3 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 xrltso < Or ℝ*
2 sotrieq2 ( ( < Or ℝ* ∧ ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) )
3 1 2 mpan ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) )