Metamath Proof Explorer
Description: Trichotomy law for 'less than' for extended reals. (Contributed by NM, 9-Feb-2006)
|
|
Ref |
Expression |
|
Assertion |
xrlttri3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
xrltso |
⊢ < Or ℝ* |
2 |
|
sotrieq2 |
⊢ ( ( < Or ℝ* ∧ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) ) |
3 |
1 2
|
mpan |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) ) |