Metamath Proof Explorer


Theorem xrmax1

Description: An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007)

Ref Expression
Assertion xrmax1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → 𝐴 ≤ if ( 𝐴𝐵 , 𝐵 , 𝐴 ) )

Proof

Step Hyp Ref Expression
1 xrleid ( 𝐴 ∈ ℝ*𝐴𝐴 )
2 iffalse ( ¬ 𝐴𝐵 → if ( 𝐴𝐵 , 𝐵 , 𝐴 ) = 𝐴 )
3 2 breq2d ( ¬ 𝐴𝐵 → ( 𝐴 ≤ if ( 𝐴𝐵 , 𝐵 , 𝐴 ) ↔ 𝐴𝐴 ) )
4 1 3 syl5ibrcom ( 𝐴 ∈ ℝ* → ( ¬ 𝐴𝐵𝐴 ≤ if ( 𝐴𝐵 , 𝐵 , 𝐴 ) ) )
5 id ( 𝐴𝐵𝐴𝐵 )
6 iftrue ( 𝐴𝐵 → if ( 𝐴𝐵 , 𝐵 , 𝐴 ) = 𝐵 )
7 5 6 breqtrrd ( 𝐴𝐵𝐴 ≤ if ( 𝐴𝐵 , 𝐵 , 𝐴 ) )
8 4 7 pm2.61d2 ( 𝐴 ∈ ℝ*𝐴 ≤ if ( 𝐴𝐵 , 𝐵 , 𝐴 ) )
9 8 adantr ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → 𝐴 ≤ if ( 𝐴𝐵 , 𝐵 , 𝐴 ) )