Step |
Hyp |
Ref |
Expression |
1 |
|
xrletri3 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐵 = 𝐴 ↔ ( 𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ) |
2 |
1
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 = 𝐴 ↔ ( 𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ) |
3 |
2
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐵 = 𝐴 ) |
4 |
3
|
anassrs |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐵 ≤ 𝐴 ) ∧ 𝐴 ≤ 𝐵 ) → 𝐵 = 𝐴 ) |
5 |
4
|
ifeq1da |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐵 ≤ 𝐴 ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) = if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐴 ) ) |
6 |
5
|
3impa |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴 ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) = if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐴 ) ) |
7 |
|
ifid |
⊢ if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐴 ) = 𝐴 |
8 |
6 7
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴 ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) = 𝐴 ) |