Step |
Hyp |
Ref |
Expression |
1 |
|
xrmax1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → 𝐴 ≤ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → 𝐴 ≤ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ) |
3 |
|
ifcl |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ∈ ℝ* ) |
4 |
3
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ∈ ℝ* ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ∈ ℝ* ) |
6 |
|
xrlelttr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ≤ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ∧ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) < 𝐶 ) → 𝐴 < 𝐶 ) ) |
7 |
5 6
|
syld3an2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ≤ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ∧ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) < 𝐶 ) → 𝐴 < 𝐶 ) ) |
8 |
2 7
|
mpand |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) < 𝐶 → 𝐴 < 𝐶 ) ) |
9 |
|
xrmax2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → 𝐵 ≤ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ) |
10 |
9
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → 𝐵 ≤ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ) |
11 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → 𝐵 ∈ ℝ* ) |
12 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → 𝐶 ∈ ℝ* ) |
13 |
|
xrlelttr |
⊢ ( ( 𝐵 ∈ ℝ* ∧ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐵 ≤ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ∧ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) < 𝐶 ) → 𝐵 < 𝐶 ) ) |
14 |
11 5 12 13
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐵 ≤ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ∧ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) < 𝐶 ) → 𝐵 < 𝐶 ) ) |
15 |
10 14
|
mpand |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) < 𝐶 → 𝐵 < 𝐶 ) ) |
16 |
8 15
|
jcad |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) < 𝐶 → ( 𝐴 < 𝐶 ∧ 𝐵 < 𝐶 ) ) ) |
17 |
|
breq1 |
⊢ ( 𝐵 = if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) → ( 𝐵 < 𝐶 ↔ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) < 𝐶 ) ) |
18 |
|
breq1 |
⊢ ( 𝐴 = if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) → ( 𝐴 < 𝐶 ↔ if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) < 𝐶 ) ) |
19 |
17 18
|
ifboth |
⊢ ( ( 𝐵 < 𝐶 ∧ 𝐴 < 𝐶 ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) < 𝐶 ) |
20 |
19
|
ancoms |
⊢ ( ( 𝐴 < 𝐶 ∧ 𝐵 < 𝐶 ) → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) < 𝐶 ) |
21 |
16 20
|
impbid1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) < 𝐶 ↔ ( 𝐴 < 𝐶 ∧ 𝐵 < 𝐶 ) ) ) |