| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrletri3 | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( 𝐵  =  𝐴  ↔  ( 𝐵  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) ) ) | 
						
							| 2 | 1 | ancoms | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐵  =  𝐴  ↔  ( 𝐵  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) ) ) | 
						
							| 3 | 2 | biimpar | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  ( 𝐵  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) )  →  𝐵  =  𝐴 ) | 
						
							| 4 | 3 | anassrs | ⊢ ( ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  𝐵  ≤  𝐴 )  ∧  𝐴  ≤  𝐵 )  →  𝐵  =  𝐴 ) | 
						
							| 5 | 4 | ifeq1da | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  𝐵  ≤  𝐴 )  →  if ( 𝐴  ≤  𝐵 ,  𝐵 ,  𝐵 )  =  if ( 𝐴  ≤  𝐵 ,  𝐴 ,  𝐵 ) ) | 
						
							| 6 | 5 | 3impa | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐵  ≤  𝐴 )  →  if ( 𝐴  ≤  𝐵 ,  𝐵 ,  𝐵 )  =  if ( 𝐴  ≤  𝐵 ,  𝐴 ,  𝐵 ) ) | 
						
							| 7 |  | ifid | ⊢ if ( 𝐴  ≤  𝐵 ,  𝐵 ,  𝐵 )  =  𝐵 | 
						
							| 8 | 6 7 | eqtr3di | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐵  ≤  𝐴 )  →  if ( 𝐴  ≤  𝐵 ,  𝐴 ,  𝐵 )  =  𝐵 ) |