Step |
Hyp |
Ref |
Expression |
1 |
|
pm5.61 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∨ 𝐴 = -∞ ) ∧ ¬ 𝐴 = -∞ ) ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∧ ¬ 𝐴 = -∞ ) ) |
2 |
|
elxr |
⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
3 |
|
df-3or |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∨ 𝐴 = -∞ ) ) |
4 |
2 3
|
bitri |
⊢ ( 𝐴 ∈ ℝ* ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∨ 𝐴 = -∞ ) ) |
5 |
|
df-ne |
⊢ ( 𝐴 ≠ -∞ ↔ ¬ 𝐴 = -∞ ) |
6 |
4 5
|
anbi12i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ↔ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∨ 𝐴 = -∞ ) ∧ ¬ 𝐴 = -∞ ) ) |
7 |
|
renemnf |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ≠ -∞ ) |
8 |
|
pnfnemnf |
⊢ +∞ ≠ -∞ |
9 |
|
neeq1 |
⊢ ( 𝐴 = +∞ → ( 𝐴 ≠ -∞ ↔ +∞ ≠ -∞ ) ) |
10 |
8 9
|
mpbiri |
⊢ ( 𝐴 = +∞ → 𝐴 ≠ -∞ ) |
11 |
7 10
|
jaoi |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) → 𝐴 ≠ -∞ ) |
12 |
11
|
neneqd |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) → ¬ 𝐴 = -∞ ) |
13 |
12
|
pm4.71i |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∧ ¬ 𝐴 = -∞ ) ) |
14 |
1 6 13
|
3bitr4i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ) |