| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm5.61 | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞ )  ∨  𝐴  =  -∞ )  ∧  ¬  𝐴  =  -∞ )  ↔  ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞ )  ∧  ¬  𝐴  =  -∞ ) ) | 
						
							| 2 |  | elxr | ⊢ ( 𝐴  ∈  ℝ*  ↔  ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞  ∨  𝐴  =  -∞ ) ) | 
						
							| 3 |  | df-3or | ⊢ ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞  ∨  𝐴  =  -∞ )  ↔  ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞ )  ∨  𝐴  =  -∞ ) ) | 
						
							| 4 | 2 3 | bitri | ⊢ ( 𝐴  ∈  ℝ*  ↔  ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞ )  ∨  𝐴  =  -∞ ) ) | 
						
							| 5 |  | df-ne | ⊢ ( 𝐴  ≠  -∞  ↔  ¬  𝐴  =  -∞ ) | 
						
							| 6 | 4 5 | anbi12i | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  ≠  -∞ )  ↔  ( ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞ )  ∨  𝐴  =  -∞ )  ∧  ¬  𝐴  =  -∞ ) ) | 
						
							| 7 |  | renemnf | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ≠  -∞ ) | 
						
							| 8 |  | pnfnemnf | ⊢ +∞  ≠  -∞ | 
						
							| 9 |  | neeq1 | ⊢ ( 𝐴  =  +∞  →  ( 𝐴  ≠  -∞  ↔  +∞  ≠  -∞ ) ) | 
						
							| 10 | 8 9 | mpbiri | ⊢ ( 𝐴  =  +∞  →  𝐴  ≠  -∞ ) | 
						
							| 11 | 7 10 | jaoi | ⊢ ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞ )  →  𝐴  ≠  -∞ ) | 
						
							| 12 | 11 | neneqd | ⊢ ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞ )  →  ¬  𝐴  =  -∞ ) | 
						
							| 13 | 12 | pm4.71i | ⊢ ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞ )  ↔  ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞ )  ∧  ¬  𝐴  =  -∞ ) ) | 
						
							| 14 | 1 6 13 | 3bitr4i | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  ≠  -∞ )  ↔  ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞ ) ) |