Step |
Hyp |
Ref |
Expression |
1 |
|
pm5.61 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) ∨ 𝐴 = +∞ ) ∧ ¬ 𝐴 = +∞ ) ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) ∧ ¬ 𝐴 = +∞ ) ) |
2 |
|
elxr |
⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
3 |
|
df-3or |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∨ 𝐴 = -∞ ) ) |
4 |
|
or32 |
⊢ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∨ 𝐴 = -∞ ) ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) ∨ 𝐴 = +∞ ) ) |
5 |
2 3 4
|
3bitri |
⊢ ( 𝐴 ∈ ℝ* ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) ∨ 𝐴 = +∞ ) ) |
6 |
|
df-ne |
⊢ ( 𝐴 ≠ +∞ ↔ ¬ 𝐴 = +∞ ) |
7 |
5 6
|
anbi12i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) ↔ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) ∨ 𝐴 = +∞ ) ∧ ¬ 𝐴 = +∞ ) ) |
8 |
|
renepnf |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ≠ +∞ ) |
9 |
|
mnfnepnf |
⊢ -∞ ≠ +∞ |
10 |
|
neeq1 |
⊢ ( 𝐴 = -∞ → ( 𝐴 ≠ +∞ ↔ -∞ ≠ +∞ ) ) |
11 |
9 10
|
mpbiri |
⊢ ( 𝐴 = -∞ → 𝐴 ≠ +∞ ) |
12 |
8 11
|
jaoi |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) → 𝐴 ≠ +∞ ) |
13 |
12
|
neneqd |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) → ¬ 𝐴 = +∞ ) |
14 |
13
|
pm4.71i |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) ∧ ¬ 𝐴 = +∞ ) ) |
15 |
1 7 14
|
3bitr4i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) ) |