| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm5.61 | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  -∞ )  ∨  𝐴  =  +∞ )  ∧  ¬  𝐴  =  +∞ )  ↔  ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  -∞ )  ∧  ¬  𝐴  =  +∞ ) ) | 
						
							| 2 |  | elxr | ⊢ ( 𝐴  ∈  ℝ*  ↔  ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞  ∨  𝐴  =  -∞ ) ) | 
						
							| 3 |  | df-3or | ⊢ ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞  ∨  𝐴  =  -∞ )  ↔  ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞ )  ∨  𝐴  =  -∞ ) ) | 
						
							| 4 |  | or32 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞ )  ∨  𝐴  =  -∞ )  ↔  ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  -∞ )  ∨  𝐴  =  +∞ ) ) | 
						
							| 5 | 2 3 4 | 3bitri | ⊢ ( 𝐴  ∈  ℝ*  ↔  ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  -∞ )  ∨  𝐴  =  +∞ ) ) | 
						
							| 6 |  | df-ne | ⊢ ( 𝐴  ≠  +∞  ↔  ¬  𝐴  =  +∞ ) | 
						
							| 7 | 5 6 | anbi12i | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  ≠  +∞ )  ↔  ( ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  -∞ )  ∨  𝐴  =  +∞ )  ∧  ¬  𝐴  =  +∞ ) ) | 
						
							| 8 |  | renepnf | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ≠  +∞ ) | 
						
							| 9 |  | mnfnepnf | ⊢ -∞  ≠  +∞ | 
						
							| 10 |  | neeq1 | ⊢ ( 𝐴  =  -∞  →  ( 𝐴  ≠  +∞  ↔  -∞  ≠  +∞ ) ) | 
						
							| 11 | 9 10 | mpbiri | ⊢ ( 𝐴  =  -∞  →  𝐴  ≠  +∞ ) | 
						
							| 12 | 8 11 | jaoi | ⊢ ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  -∞ )  →  𝐴  ≠  +∞ ) | 
						
							| 13 | 12 | neneqd | ⊢ ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  -∞ )  →  ¬  𝐴  =  +∞ ) | 
						
							| 14 | 13 | pm4.71i | ⊢ ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  -∞ )  ↔  ( ( 𝐴  ∈  ℝ  ∨  𝐴  =  -∞ )  ∧  ¬  𝐴  =  +∞ ) ) | 
						
							| 15 | 1 7 14 | 3bitr4i | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  ≠  +∞ )  ↔  ( 𝐴  ∈  ℝ  ∨  𝐴  =  -∞ ) ) |