Metamath Proof Explorer


Theorem xrnltled

Description: "Not less than" implies "less than or equal to". (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses xrnltled.1 ( 𝜑𝐴 ∈ ℝ* )
xrnltled.2 ( 𝜑𝐵 ∈ ℝ* )
xrnltled.3 ( 𝜑 → ¬ 𝐵 < 𝐴 )
Assertion xrnltled ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 xrnltled.1 ( 𝜑𝐴 ∈ ℝ* )
2 xrnltled.2 ( 𝜑𝐵 ∈ ℝ* )
3 xrnltled.3 ( 𝜑 → ¬ 𝐵 < 𝐴 )
4 1 2 xrlenltd ( 𝜑 → ( 𝐴𝐵 ↔ ¬ 𝐵 < 𝐴 ) )
5 3 4 mpbird ( 𝜑𝐴𝐵 )