Metamath Proof Explorer
Description: "Not less than" implies "less than or equal to". (Contributed by Glauco
Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
xrnltled.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
|
|
xrnltled.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
|
|
xrnltled.3 |
⊢ ( 𝜑 → ¬ 𝐵 < 𝐴 ) |
|
Assertion |
xrnltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
xrnltled.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
2 |
|
xrnltled.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
3 |
|
xrnltled.3 |
⊢ ( 𝜑 → ¬ 𝐵 < 𝐴 ) |
4 |
1 2
|
xrlenltd |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
5 |
3 4
|
mpbird |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |