Metamath Proof Explorer


Theorem xrnmnfpnf

Description: An extended real that is neither real nor minus infinity, is plus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses xrnmnfpnf.1 ( 𝜑𝐴 ∈ ℝ* )
xrnmnfpnf.2 ( 𝜑 → ¬ 𝐴 ∈ ℝ )
xrnmnfpnf.3 ( 𝜑𝐴 ≠ -∞ )
Assertion xrnmnfpnf ( 𝜑𝐴 = +∞ )

Proof

Step Hyp Ref Expression
1 xrnmnfpnf.1 ( 𝜑𝐴 ∈ ℝ* )
2 xrnmnfpnf.2 ( 𝜑 → ¬ 𝐴 ∈ ℝ )
3 xrnmnfpnf.3 ( 𝜑𝐴 ≠ -∞ )
4 1 3 jca ( 𝜑 → ( 𝐴 ∈ ℝ*𝐴 ≠ -∞ ) )
5 xrnemnf ( ( 𝐴 ∈ ℝ*𝐴 ≠ -∞ ) ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) )
6 4 5 sylib ( 𝜑 → ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) )
7 pm2.53 ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) → ( ¬ 𝐴 ∈ ℝ → 𝐴 = +∞ ) )
8 6 2 7 sylc ( 𝜑𝐴 = +∞ )