Description: An extended real that is neither real nor minus infinity, is plus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xrnmnfpnf.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
xrnmnfpnf.2 | ⊢ ( 𝜑 → ¬ 𝐴 ∈ ℝ ) | ||
xrnmnfpnf.3 | ⊢ ( 𝜑 → 𝐴 ≠ -∞ ) | ||
Assertion | xrnmnfpnf | ⊢ ( 𝜑 → 𝐴 = +∞ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnmnfpnf.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
2 | xrnmnfpnf.2 | ⊢ ( 𝜑 → ¬ 𝐴 ∈ ℝ ) | |
3 | xrnmnfpnf.3 | ⊢ ( 𝜑 → 𝐴 ≠ -∞ ) | |
4 | 1 3 | jca | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ) |
5 | xrnemnf | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ) | |
6 | 4 5 | sylib | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ) |
7 | pm2.53 | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) → ( ¬ 𝐴 ∈ ℝ → 𝐴 = +∞ ) ) | |
8 | 6 2 7 | sylc | ⊢ ( 𝜑 → 𝐴 = +∞ ) |