Metamath Proof Explorer


Theorem xrnpnfmnf

Description: An extended real that is neither real nor plus infinity, is minus infinity. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xrnpnfmnf.1 ( 𝜑𝐴 ∈ ℝ* )
xrnpnfmnf.2 ( 𝜑 → ¬ 𝐴 ∈ ℝ )
xrnpnfmnf.3 ( 𝜑𝐴 ≠ +∞ )
Assertion xrnpnfmnf ( 𝜑𝐴 = -∞ )

Proof

Step Hyp Ref Expression
1 xrnpnfmnf.1 ( 𝜑𝐴 ∈ ℝ* )
2 xrnpnfmnf.2 ( 𝜑 → ¬ 𝐴 ∈ ℝ )
3 xrnpnfmnf.3 ( 𝜑𝐴 ≠ +∞ )
4 1 3 jca ( 𝜑 → ( 𝐴 ∈ ℝ*𝐴 ≠ +∞ ) )
5 xrnepnf ( ( 𝐴 ∈ ℝ*𝐴 ≠ +∞ ) ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) )
6 4 5 sylib ( 𝜑 → ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) )
7 pm2.53 ( ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) → ( ¬ 𝐴 ∈ ℝ → 𝐴 = -∞ ) )
8 6 2 7 sylc ( 𝜑𝐴 = -∞ )