| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrnres3 |
⊢ ( ( 𝑅 ⋉ 𝑆 ) ↾ 𝐴 ) = ( ( 𝑅 ↾ 𝐴 ) ⋉ ( 𝑆 ↾ 𝐴 ) ) |
| 2 |
|
xrnres2 |
⊢ ( ( 𝑅 ⋉ 𝑆 ) ↾ 𝐴 ) = ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) |
| 3 |
1 2
|
eqtr3i |
⊢ ( ( 𝑅 ↾ 𝐴 ) ⋉ ( 𝑆 ↾ 𝐴 ) ) = ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) |
| 4 |
|
dfres4 |
⊢ ( 𝑅 ↾ 𝐴 ) = ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) |
| 5 |
|
dfres4 |
⊢ ( 𝑆 ↾ 𝐴 ) = ( 𝑆 ∩ ( 𝐴 × ran ( 𝑆 ↾ 𝐴 ) ) ) |
| 6 |
4 5
|
xrneq12i |
⊢ ( ( 𝑅 ↾ 𝐴 ) ⋉ ( 𝑆 ↾ 𝐴 ) ) = ( ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) ⋉ ( 𝑆 ∩ ( 𝐴 × ran ( 𝑆 ↾ 𝐴 ) ) ) ) |
| 7 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ ( 𝑆 ↾ 𝐴 ) ∈ 𝑋 ) → 𝐴 ∈ 𝑉 ) |
| 8 |
|
resexg |
⊢ ( 𝑅 ∈ 𝑊 → ( 𝑅 ↾ 𝐴 ) ∈ V ) |
| 9 |
|
rnexg |
⊢ ( ( 𝑅 ↾ 𝐴 ) ∈ V → ran ( 𝑅 ↾ 𝐴 ) ∈ V ) |
| 10 |
8 9
|
syl |
⊢ ( 𝑅 ∈ 𝑊 → ran ( 𝑅 ↾ 𝐴 ) ∈ V ) |
| 11 |
10
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ ( 𝑆 ↾ 𝐴 ) ∈ 𝑋 ) → ran ( 𝑅 ↾ 𝐴 ) ∈ V ) |
| 12 |
|
rnexg |
⊢ ( ( 𝑆 ↾ 𝐴 ) ∈ 𝑋 → ran ( 𝑆 ↾ 𝐴 ) ∈ V ) |
| 13 |
12
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ ( 𝑆 ↾ 𝐴 ) ∈ 𝑋 ) → ran ( 𝑆 ↾ 𝐴 ) ∈ V ) |
| 14 |
|
inxpxrn |
⊢ ( ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) ⋉ ( 𝑆 ∩ ( 𝐴 × ran ( 𝑆 ↾ 𝐴 ) ) ) ) = ( ( 𝑅 ⋉ 𝑆 ) ∩ ( 𝐴 × ( ran ( 𝑅 ↾ 𝐴 ) × ran ( 𝑆 ↾ 𝐴 ) ) ) ) |
| 15 |
|
xrninxpex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ran ( 𝑅 ↾ 𝐴 ) ∈ V ∧ ran ( 𝑆 ↾ 𝐴 ) ∈ V ) → ( ( 𝑅 ⋉ 𝑆 ) ∩ ( 𝐴 × ( ran ( 𝑅 ↾ 𝐴 ) × ran ( 𝑆 ↾ 𝐴 ) ) ) ) ∈ V ) |
| 16 |
14 15
|
eqeltrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ran ( 𝑅 ↾ 𝐴 ) ∈ V ∧ ran ( 𝑆 ↾ 𝐴 ) ∈ V ) → ( ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) ⋉ ( 𝑆 ∩ ( 𝐴 × ran ( 𝑆 ↾ 𝐴 ) ) ) ) ∈ V ) |
| 17 |
7 11 13 16
|
syl3anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ ( 𝑆 ↾ 𝐴 ) ∈ 𝑋 ) → ( ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) ⋉ ( 𝑆 ∩ ( 𝐴 × ran ( 𝑆 ↾ 𝐴 ) ) ) ) ∈ V ) |
| 18 |
6 17
|
eqeltrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ ( 𝑆 ↾ 𝐴 ) ∈ 𝑋 ) → ( ( 𝑅 ↾ 𝐴 ) ⋉ ( 𝑆 ↾ 𝐴 ) ) ∈ V ) |
| 19 |
3 18
|
eqeltrrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ ( 𝑆 ↾ 𝐴 ) ∈ 𝑋 ) → ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) ∈ V ) |