Step |
Hyp |
Ref |
Expression |
1 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
2 |
1
|
adantl |
⊢ ( ( 𝐴 = +∞ ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ* ) |
3 |
|
id |
⊢ ( 𝐴 = +∞ → 𝐴 = +∞ ) |
4 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
5 |
4
|
a1i |
⊢ ( 𝐴 = +∞ → +∞ ∈ ℝ* ) |
6 |
3 5
|
eqeltrd |
⊢ ( 𝐴 = +∞ → 𝐴 ∈ ℝ* ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 = +∞ ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ* ) |
8 |
|
ltpnf |
⊢ ( 𝑥 ∈ ℝ → 𝑥 < +∞ ) |
9 |
8
|
adantl |
⊢ ( ( 𝐴 = +∞ ∧ 𝑥 ∈ ℝ ) → 𝑥 < +∞ ) |
10 |
|
simpl |
⊢ ( ( 𝐴 = +∞ ∧ 𝑥 ∈ ℝ ) → 𝐴 = +∞ ) |
11 |
9 10
|
breqtrrd |
⊢ ( ( 𝐴 = +∞ ∧ 𝑥 ∈ ℝ ) → 𝑥 < 𝐴 ) |
12 |
2 7 11
|
xrltled |
⊢ ( ( 𝐴 = +∞ ∧ 𝑥 ∈ ℝ ) → 𝑥 ≤ 𝐴 ) |
13 |
12
|
ralrimiva |
⊢ ( 𝐴 = +∞ → ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) |
14 |
13
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 = +∞ ) → ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) |
15 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) ∧ 𝐴 < +∞ ) → 𝐴 ∈ ℝ* ) |
16 |
|
0red |
⊢ ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 → 0 ∈ ℝ ) |
17 |
|
id |
⊢ ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 → ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) |
18 |
|
breq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝐴 ↔ 0 ≤ 𝐴 ) ) |
19 |
18
|
rspcva |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) → 0 ≤ 𝐴 ) |
20 |
16 17 19
|
syl2anc |
⊢ ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 → 0 ≤ 𝐴 ) |
21 |
20
|
adantr |
⊢ ( ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 = -∞ ) → 0 ≤ 𝐴 ) |
22 |
|
simpr |
⊢ ( ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 = -∞ ) → 𝐴 = -∞ ) |
23 |
21 22
|
breqtrd |
⊢ ( ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 = -∞ ) → 0 ≤ -∞ ) |
24 |
23
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) ∧ 𝐴 = -∞ ) → 0 ≤ -∞ ) |
25 |
|
mnflt0 |
⊢ -∞ < 0 |
26 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
27 |
|
0xr |
⊢ 0 ∈ ℝ* |
28 |
|
xrltnle |
⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( -∞ < 0 ↔ ¬ 0 ≤ -∞ ) ) |
29 |
26 27 28
|
mp2an |
⊢ ( -∞ < 0 ↔ ¬ 0 ≤ -∞ ) |
30 |
25 29
|
mpbi |
⊢ ¬ 0 ≤ -∞ |
31 |
30
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) ∧ 𝐴 = -∞ ) → ¬ 0 ≤ -∞ ) |
32 |
24 31
|
pm2.65da |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) → ¬ 𝐴 = -∞ ) |
33 |
32
|
neqned |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) → 𝐴 ≠ -∞ ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) ∧ 𝐴 < +∞ ) → 𝐴 ≠ -∞ ) |
35 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < +∞ ) → 𝐴 ∈ ℝ* ) |
36 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < +∞ ) → +∞ ∈ ℝ* ) |
37 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < +∞ ) → 𝐴 < +∞ ) |
38 |
35 36 37
|
xrltned |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < +∞ ) → 𝐴 ≠ +∞ ) |
39 |
38
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) ∧ 𝐴 < +∞ ) → 𝐴 ≠ +∞ ) |
40 |
15 34 39
|
xrred |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) ∧ 𝐴 < +∞ ) → 𝐴 ∈ ℝ ) |
41 |
|
peano2re |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) |
42 |
41
|
adantl |
⊢ ( ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 ∈ ℝ ) → ( 𝐴 + 1 ) ∈ ℝ ) |
43 |
|
simpl |
⊢ ( ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 ∈ ℝ ) → ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) |
44 |
|
breq1 |
⊢ ( 𝑥 = ( 𝐴 + 1 ) → ( 𝑥 ≤ 𝐴 ↔ ( 𝐴 + 1 ) ≤ 𝐴 ) ) |
45 |
44
|
rspcva |
⊢ ( ( ( 𝐴 + 1 ) ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) → ( 𝐴 + 1 ) ≤ 𝐴 ) |
46 |
42 43 45
|
syl2anc |
⊢ ( ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 ∈ ℝ ) → ( 𝐴 + 1 ) ≤ 𝐴 ) |
47 |
|
ltp1 |
⊢ ( 𝐴 ∈ ℝ → 𝐴 < ( 𝐴 + 1 ) ) |
48 |
|
id |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) |
49 |
48 41
|
ltnled |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < ( 𝐴 + 1 ) ↔ ¬ ( 𝐴 + 1 ) ≤ 𝐴 ) ) |
50 |
47 49
|
mpbid |
⊢ ( 𝐴 ∈ ℝ → ¬ ( 𝐴 + 1 ) ≤ 𝐴 ) |
51 |
50
|
adantl |
⊢ ( ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 ∈ ℝ ) → ¬ ( 𝐴 + 1 ) ≤ 𝐴 ) |
52 |
46 51
|
pm2.65da |
⊢ ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 → ¬ 𝐴 ∈ ℝ ) |
53 |
52
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) ∧ 𝐴 < +∞ ) → ¬ 𝐴 ∈ ℝ ) |
54 |
40 53
|
pm2.65da |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) → ¬ 𝐴 < +∞ ) |
55 |
|
nltpnft |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 = +∞ ↔ ¬ 𝐴 < +∞ ) ) |
56 |
55
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) → ( 𝐴 = +∞ ↔ ¬ 𝐴 < +∞ ) ) |
57 |
54 56
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) → 𝐴 = +∞ ) |
58 |
14 57
|
impbida |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 = +∞ ↔ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) ) |