| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐴 = +∞ ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ* ) |
| 3 |
|
id |
⊢ ( 𝐴 = +∞ → 𝐴 = +∞ ) |
| 4 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 5 |
4
|
a1i |
⊢ ( 𝐴 = +∞ → +∞ ∈ ℝ* ) |
| 6 |
3 5
|
eqeltrd |
⊢ ( 𝐴 = +∞ → 𝐴 ∈ ℝ* ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐴 = +∞ ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ* ) |
| 8 |
|
ltpnf |
⊢ ( 𝑥 ∈ ℝ → 𝑥 < +∞ ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝐴 = +∞ ∧ 𝑥 ∈ ℝ ) → 𝑥 < +∞ ) |
| 10 |
|
simpl |
⊢ ( ( 𝐴 = +∞ ∧ 𝑥 ∈ ℝ ) → 𝐴 = +∞ ) |
| 11 |
9 10
|
breqtrrd |
⊢ ( ( 𝐴 = +∞ ∧ 𝑥 ∈ ℝ ) → 𝑥 < 𝐴 ) |
| 12 |
2 7 11
|
xrltled |
⊢ ( ( 𝐴 = +∞ ∧ 𝑥 ∈ ℝ ) → 𝑥 ≤ 𝐴 ) |
| 13 |
12
|
ralrimiva |
⊢ ( 𝐴 = +∞ → ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 = +∞ ) → ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) |
| 15 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) ∧ 𝐴 < +∞ ) → 𝐴 ∈ ℝ* ) |
| 16 |
|
0red |
⊢ ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 → 0 ∈ ℝ ) |
| 17 |
|
id |
⊢ ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 → ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) |
| 18 |
|
breq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝐴 ↔ 0 ≤ 𝐴 ) ) |
| 19 |
18
|
rspcva |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) → 0 ≤ 𝐴 ) |
| 20 |
16 17 19
|
syl2anc |
⊢ ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 → 0 ≤ 𝐴 ) |
| 21 |
20
|
adantr |
⊢ ( ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 = -∞ ) → 0 ≤ 𝐴 ) |
| 22 |
|
simpr |
⊢ ( ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 = -∞ ) → 𝐴 = -∞ ) |
| 23 |
21 22
|
breqtrd |
⊢ ( ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 = -∞ ) → 0 ≤ -∞ ) |
| 24 |
23
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) ∧ 𝐴 = -∞ ) → 0 ≤ -∞ ) |
| 25 |
|
mnflt0 |
⊢ -∞ < 0 |
| 26 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 27 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 28 |
|
xrltnle |
⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( -∞ < 0 ↔ ¬ 0 ≤ -∞ ) ) |
| 29 |
26 27 28
|
mp2an |
⊢ ( -∞ < 0 ↔ ¬ 0 ≤ -∞ ) |
| 30 |
25 29
|
mpbi |
⊢ ¬ 0 ≤ -∞ |
| 31 |
30
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) ∧ 𝐴 = -∞ ) → ¬ 0 ≤ -∞ ) |
| 32 |
24 31
|
pm2.65da |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) → ¬ 𝐴 = -∞ ) |
| 33 |
32
|
neqned |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) → 𝐴 ≠ -∞ ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) ∧ 𝐴 < +∞ ) → 𝐴 ≠ -∞ ) |
| 35 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < +∞ ) → 𝐴 ∈ ℝ* ) |
| 36 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < +∞ ) → +∞ ∈ ℝ* ) |
| 37 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < +∞ ) → 𝐴 < +∞ ) |
| 38 |
35 36 37
|
xrltned |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < +∞ ) → 𝐴 ≠ +∞ ) |
| 39 |
38
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) ∧ 𝐴 < +∞ ) → 𝐴 ≠ +∞ ) |
| 40 |
15 34 39
|
xrred |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) ∧ 𝐴 < +∞ ) → 𝐴 ∈ ℝ ) |
| 41 |
|
peano2re |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) |
| 42 |
41
|
adantl |
⊢ ( ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 ∈ ℝ ) → ( 𝐴 + 1 ) ∈ ℝ ) |
| 43 |
|
simpl |
⊢ ( ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 ∈ ℝ ) → ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) |
| 44 |
|
breq1 |
⊢ ( 𝑥 = ( 𝐴 + 1 ) → ( 𝑥 ≤ 𝐴 ↔ ( 𝐴 + 1 ) ≤ 𝐴 ) ) |
| 45 |
44
|
rspcva |
⊢ ( ( ( 𝐴 + 1 ) ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) → ( 𝐴 + 1 ) ≤ 𝐴 ) |
| 46 |
42 43 45
|
syl2anc |
⊢ ( ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 ∈ ℝ ) → ( 𝐴 + 1 ) ≤ 𝐴 ) |
| 47 |
|
ltp1 |
⊢ ( 𝐴 ∈ ℝ → 𝐴 < ( 𝐴 + 1 ) ) |
| 48 |
|
id |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) |
| 49 |
48 41
|
ltnled |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < ( 𝐴 + 1 ) ↔ ¬ ( 𝐴 + 1 ) ≤ 𝐴 ) ) |
| 50 |
47 49
|
mpbid |
⊢ ( 𝐴 ∈ ℝ → ¬ ( 𝐴 + 1 ) ≤ 𝐴 ) |
| 51 |
50
|
adantl |
⊢ ( ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 ∈ ℝ ) → ¬ ( 𝐴 + 1 ) ≤ 𝐴 ) |
| 52 |
46 51
|
pm2.65da |
⊢ ( ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 → ¬ 𝐴 ∈ ℝ ) |
| 53 |
52
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) ∧ 𝐴 < +∞ ) → ¬ 𝐴 ∈ ℝ ) |
| 54 |
40 53
|
pm2.65da |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) → ¬ 𝐴 < +∞ ) |
| 55 |
|
nltpnft |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 = +∞ ↔ ¬ 𝐴 < +∞ ) ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) → ( 𝐴 = +∞ ↔ ¬ 𝐴 < +∞ ) ) |
| 57 |
54 56
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) → 𝐴 = +∞ ) |
| 58 |
14 57
|
impbida |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 = +∞ ↔ ∀ 𝑥 ∈ ℝ 𝑥 ≤ 𝐴 ) ) |