Step |
Hyp |
Ref |
Expression |
1 |
|
xrralrecnnge.n |
⊢ Ⅎ 𝑛 𝜑 |
2 |
|
xrralrecnnge.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
3 |
|
xrralrecnnge.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
4 |
|
nfv |
⊢ Ⅎ 𝑛 𝐴 ≤ 𝐵 |
5 |
1 4
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) |
6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
7 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
9 |
6 8
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 − ( 1 / 𝑛 ) ) ∈ ℝ ) |
10 |
9
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 − ( 1 / 𝑛 ) ) ∈ ℝ* ) |
11 |
10
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 − ( 1 / 𝑛 ) ) ∈ ℝ* ) |
12 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝐵 ∈ ℝ* ) |
13 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
14 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℝ* ) |
15 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
16 |
15
|
rpreccld |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ+ ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
18 |
6 17
|
ltsubrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 − ( 1 / 𝑛 ) ) < 𝐴 ) |
19 |
18
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 − ( 1 / 𝑛 ) ) < 𝐴 ) |
20 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝐴 ≤ 𝐵 ) |
21 |
11 14 12 19 20
|
xrltletrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 − ( 1 / 𝑛 ) ) < 𝐵 ) |
22 |
11 12 21
|
xrltled |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) |
23 |
22
|
ex |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( 𝑛 ∈ ℕ → ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ) |
24 |
5 23
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) |
25 |
24
|
ex |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 → ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ) |
26 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
27 |
26
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
28 |
2
|
ltpnfd |
⊢ ( 𝜑 → 𝐴 < +∞ ) |
29 |
13 27 28
|
xrltled |
⊢ ( 𝜑 → 𝐴 ≤ +∞ ) |
30 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ 𝐵 = +∞ ) → 𝐴 ≤ +∞ ) |
31 |
|
id |
⊢ ( 𝐵 = +∞ → 𝐵 = +∞ ) |
32 |
31
|
eqcomd |
⊢ ( 𝐵 = +∞ → +∞ = 𝐵 ) |
33 |
32
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ 𝐵 = +∞ ) → +∞ = 𝐵 ) |
34 |
30 33
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ 𝐵 = +∞ ) → 𝐴 ≤ 𝐵 ) |
35 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ ¬ 𝐵 = +∞ ) → 𝐵 ∈ ℝ* ) |
36 |
|
1nn |
⊢ 1 ∈ ℕ |
37 |
36
|
a1i |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 → 1 ∈ ℕ ) |
38 |
|
id |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 → ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) |
39 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 1 / 𝑛 ) = ( 1 / 1 ) ) |
40 |
39
|
oveq2d |
⊢ ( 𝑛 = 1 → ( 𝐴 − ( 1 / 𝑛 ) ) = ( 𝐴 − ( 1 / 1 ) ) ) |
41 |
40
|
breq1d |
⊢ ( 𝑛 = 1 → ( ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ↔ ( 𝐴 − ( 1 / 1 ) ) ≤ 𝐵 ) ) |
42 |
41
|
rspcva |
⊢ ( ( 1 ∈ ℕ ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) → ( 𝐴 − ( 1 / 1 ) ) ≤ 𝐵 ) |
43 |
37 38 42
|
syl2anc |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 → ( 𝐴 − ( 1 / 1 ) ) ≤ 𝐵 ) |
44 |
43
|
adantr |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ∧ 𝐵 = -∞ ) → ( 𝐴 − ( 1 / 1 ) ) ≤ 𝐵 ) |
45 |
|
simpr |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ∧ 𝐵 = -∞ ) → 𝐵 = -∞ ) |
46 |
44 45
|
breqtrd |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ∧ 𝐵 = -∞ ) → ( 𝐴 − ( 1 / 1 ) ) ≤ -∞ ) |
47 |
46
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ 𝐵 = -∞ ) → ( 𝐴 − ( 1 / 1 ) ) ≤ -∞ ) |
48 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
49 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
50 |
49
|
a1i |
⊢ ( 𝜑 → 1 ≠ 0 ) |
51 |
48 48 50
|
redivcld |
⊢ ( 𝜑 → ( 1 / 1 ) ∈ ℝ ) |
52 |
2 51
|
resubcld |
⊢ ( 𝜑 → ( 𝐴 − ( 1 / 1 ) ) ∈ ℝ ) |
53 |
52
|
mnfltd |
⊢ ( 𝜑 → -∞ < ( 𝐴 − ( 1 / 1 ) ) ) |
54 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
55 |
54
|
a1i |
⊢ ( 𝜑 → -∞ ∈ ℝ* ) |
56 |
52
|
rexrd |
⊢ ( 𝜑 → ( 𝐴 − ( 1 / 1 ) ) ∈ ℝ* ) |
57 |
55 56
|
xrltnled |
⊢ ( 𝜑 → ( -∞ < ( 𝐴 − ( 1 / 1 ) ) ↔ ¬ ( 𝐴 − ( 1 / 1 ) ) ≤ -∞ ) ) |
58 |
53 57
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝐴 − ( 1 / 1 ) ) ≤ -∞ ) |
59 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ 𝐵 = -∞ ) → ¬ ( 𝐴 − ( 1 / 1 ) ) ≤ -∞ ) |
60 |
47 59
|
pm2.65da |
⊢ ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) → ¬ 𝐵 = -∞ ) |
61 |
60
|
neqned |
⊢ ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) → 𝐵 ≠ -∞ ) |
62 |
61
|
adantr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ ¬ 𝐵 = +∞ ) → 𝐵 ≠ -∞ ) |
63 |
|
neqne |
⊢ ( ¬ 𝐵 = +∞ → 𝐵 ≠ +∞ ) |
64 |
63
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ ¬ 𝐵 = +∞ ) → 𝐵 ≠ +∞ ) |
65 |
35 62 64
|
xrred |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ ¬ 𝐵 = +∞ ) → 𝐵 ∈ ℝ ) |
66 |
|
nfv |
⊢ Ⅎ 𝑛 𝐵 ∈ ℝ |
67 |
1 66
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝐵 ∈ ℝ ) |
68 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ* ) |
69 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
70 |
67 68 69
|
xrralrecnnle |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ∀ 𝑛 ∈ ℕ 𝐴 ≤ ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
71 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
72 |
7
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
73 |
69
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
74 |
71 72 73
|
lesubaddd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ↔ 𝐴 ≤ ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
75 |
74
|
bicomd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ≤ ( 𝐵 + ( 1 / 𝑛 ) ) ↔ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ) |
76 |
67 75
|
ralbida |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑛 ∈ ℕ 𝐴 ≤ ( 𝐵 + ( 1 / 𝑛 ) ) ↔ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ) |
77 |
70 76
|
bitr2d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ↔ 𝐴 ≤ 𝐵 ) ) |
78 |
77
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 → 𝐴 ≤ 𝐵 ) ) |
79 |
78
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |
80 |
79
|
an32s |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ 𝐵 ∈ ℝ ) → 𝐴 ≤ 𝐵 ) |
81 |
65 80
|
syldan |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ ¬ 𝐵 = +∞ ) → 𝐴 ≤ 𝐵 ) |
82 |
34 81
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |
83 |
82
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 → 𝐴 ≤ 𝐵 ) ) |
84 |
25 83
|
impbid |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ) |