| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( -∞ < 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → -∞ < 𝐴 ) |
| 2 |
|
ltpnf |
⊢ ( 𝐵 ∈ ℝ → 𝐵 < +∞ ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → 𝐵 < +∞ ) |
| 4 |
|
rexr |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) |
| 5 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 6 |
|
xrlelttr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞ ) → 𝐴 < +∞ ) ) |
| 7 |
5 6
|
mp3an3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞ ) → 𝐴 < +∞ ) ) |
| 8 |
4 7
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞ ) → 𝐴 < +∞ ) ) |
| 9 |
3 8
|
mpan2d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → 𝐴 < +∞ ) ) |
| 10 |
9
|
imp |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → 𝐴 < +∞ ) |
| 11 |
10
|
adantrl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( -∞ < 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐴 < +∞ ) |
| 12 |
|
xrrebnd |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ∈ ℝ ↔ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) ) |
| 13 |
12
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( -∞ < 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ∈ ℝ ↔ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) ) |
| 14 |
1 11 13
|
mpbir2and |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( -∞ < 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ ) |