Step |
Hyp |
Ref |
Expression |
1 |
|
mnfle |
⊢ ( 𝐴 ∈ ℝ* → -∞ ≤ 𝐴 ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → -∞ ≤ 𝐴 ) |
3 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
4 |
|
xrlelttr |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( -∞ ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → -∞ < 𝐵 ) ) |
5 |
3 4
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( -∞ ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → -∞ < 𝐵 ) ) |
6 |
2 5
|
mpand |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → -∞ < 𝐵 ) ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 < 𝐵 → -∞ < 𝐵 ) ) |
8 |
|
pnfge |
⊢ ( 𝐶 ∈ ℝ* → 𝐶 ≤ +∞ ) |
9 |
8
|
adantl |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → 𝐶 ≤ +∞ ) |
10 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
11 |
|
xrltletr |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝐵 < 𝐶 ∧ 𝐶 ≤ +∞ ) → 𝐵 < +∞ ) ) |
12 |
10 11
|
mp3an3 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐵 < 𝐶 ∧ 𝐶 ≤ +∞ ) → 𝐵 < +∞ ) ) |
13 |
9 12
|
mpan2d |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 < 𝐶 → 𝐵 < +∞ ) ) |
14 |
13
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 < 𝐶 → 𝐵 < +∞ ) ) |
15 |
7 14
|
anim12d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → ( -∞ < 𝐵 ∧ 𝐵 < +∞ ) ) ) |
16 |
|
xrrebnd |
⊢ ( 𝐵 ∈ ℝ* → ( 𝐵 ∈ ℝ ↔ ( -∞ < 𝐵 ∧ 𝐵 < +∞ ) ) ) |
17 |
16
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ∈ ℝ ↔ ( -∞ < 𝐵 ∧ 𝐵 < +∞ ) ) ) |
18 |
15 17
|
sylibrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐵 ∈ ℝ ) ) |
19 |
18
|
imp |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) ) → 𝐵 ∈ ℝ ) |