| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnflt |
⊢ ( 𝐴 ∈ ℝ → -∞ < 𝐴 ) |
| 2 |
|
ltpnf |
⊢ ( 𝐴 ∈ ℝ → 𝐴 < +∞ ) |
| 3 |
1 2
|
jca |
⊢ ( 𝐴 ∈ ℝ → ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) |
| 4 |
|
nltpnft |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 = +∞ ↔ ¬ 𝐴 < +∞ ) ) |
| 5 |
|
ngtmnft |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 = -∞ ↔ ¬ -∞ < 𝐴 ) ) |
| 6 |
4 5
|
orbi12d |
⊢ ( 𝐴 ∈ ℝ* → ( ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ↔ ( ¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴 ) ) ) |
| 7 |
|
ianor |
⊢ ( ¬ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ↔ ( ¬ -∞ < 𝐴 ∨ ¬ 𝐴 < +∞ ) ) |
| 8 |
|
orcom |
⊢ ( ( ¬ -∞ < 𝐴 ∨ ¬ 𝐴 < +∞ ) ↔ ( ¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴 ) ) |
| 9 |
7 8
|
bitr2i |
⊢ ( ( ¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴 ) ↔ ¬ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) |
| 10 |
6 9
|
bitrdi |
⊢ ( 𝐴 ∈ ℝ* → ( ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ↔ ¬ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) ) |
| 11 |
10
|
con2bid |
⊢ ( 𝐴 ∈ ℝ* → ( ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ↔ ¬ ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) ) |
| 12 |
|
elxr |
⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
| 13 |
|
3orass |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ↔ ( 𝐴 ∈ ℝ ∨ ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) ) |
| 14 |
|
orcom |
⊢ ( ( 𝐴 ∈ ℝ ∨ ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) ↔ ( ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∨ 𝐴 ∈ ℝ ) ) |
| 15 |
13 14
|
bitri |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ↔ ( ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∨ 𝐴 ∈ ℝ ) ) |
| 16 |
12 15
|
sylbb |
⊢ ( 𝐴 ∈ ℝ* → ( ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∨ 𝐴 ∈ ℝ ) ) |
| 17 |
16
|
ord |
⊢ ( 𝐴 ∈ ℝ* → ( ¬ ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) → 𝐴 ∈ ℝ ) ) |
| 18 |
11 17
|
sylbid |
⊢ ( 𝐴 ∈ ℝ* → ( ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) → 𝐴 ∈ ℝ ) ) |
| 19 |
3 18
|
impbid2 |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ∈ ℝ ↔ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) ) |