Description: The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 9-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xrrest.1 | ⊢ 𝑋 = ( ordTop ‘ ≤ ) | |
xrrest.2 | ⊢ 𝑅 = ( topGen ‘ ran (,) ) | ||
Assertion | xrrest | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑋 ↾t 𝐴 ) = ( 𝑅 ↾t 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrrest.1 | ⊢ 𝑋 = ( ordTop ‘ ≤ ) | |
2 | xrrest.2 | ⊢ 𝑅 = ( topGen ‘ ran (,) ) | |
3 | 1 | oveq1i | ⊢ ( 𝑋 ↾t ℝ ) = ( ( ordTop ‘ ≤ ) ↾t ℝ ) |
4 | 3 | xrtgioo | ⊢ ( topGen ‘ ran (,) ) = ( 𝑋 ↾t ℝ ) |
5 | 2 4 | eqtri | ⊢ 𝑅 = ( 𝑋 ↾t ℝ ) |
6 | 5 | oveq1i | ⊢ ( 𝑅 ↾t 𝐴 ) = ( ( 𝑋 ↾t ℝ ) ↾t 𝐴 ) |
7 | 1 | fvexi | ⊢ 𝑋 ∈ V |
8 | reex | ⊢ ℝ ∈ V | |
9 | restabs | ⊢ ( ( 𝑋 ∈ V ∧ 𝐴 ⊆ ℝ ∧ ℝ ∈ V ) → ( ( 𝑋 ↾t ℝ ) ↾t 𝐴 ) = ( 𝑋 ↾t 𝐴 ) ) | |
10 | 7 8 9 | mp3an13 | ⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑋 ↾t ℝ ) ↾t 𝐴 ) = ( 𝑋 ↾t 𝐴 ) ) |
11 | 6 10 | eqtr2id | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑋 ↾t 𝐴 ) = ( 𝑅 ↾t 𝐴 ) ) |