Metamath Proof Explorer


Theorem xrrest

Description: The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypotheses xrrest.1 𝑋 = ( ordTop ‘ ≤ )
xrrest.2 𝑅 = ( topGen ‘ ran (,) )
Assertion xrrest ( 𝐴 ⊆ ℝ → ( 𝑋t 𝐴 ) = ( 𝑅t 𝐴 ) )

Proof

Step Hyp Ref Expression
1 xrrest.1 𝑋 = ( ordTop ‘ ≤ )
2 xrrest.2 𝑅 = ( topGen ‘ ran (,) )
3 1 oveq1i ( 𝑋t ℝ ) = ( ( ordTop ‘ ≤ ) ↾t ℝ )
4 3 xrtgioo ( topGen ‘ ran (,) ) = ( 𝑋t ℝ )
5 2 4 eqtri 𝑅 = ( 𝑋t ℝ )
6 5 oveq1i ( 𝑅t 𝐴 ) = ( ( 𝑋t ℝ ) ↾t 𝐴 )
7 1 fvexi 𝑋 ∈ V
8 reex ℝ ∈ V
9 restabs ( ( 𝑋 ∈ V ∧ 𝐴 ⊆ ℝ ∧ ℝ ∈ V ) → ( ( 𝑋t ℝ ) ↾t 𝐴 ) = ( 𝑋t 𝐴 ) )
10 7 8 9 mp3an13 ( 𝐴 ⊆ ℝ → ( ( 𝑋t ℝ ) ↾t 𝐴 ) = ( 𝑋t 𝐴 ) )
11 6 10 eqtr2id ( 𝐴 ⊆ ℝ → ( 𝑋t 𝐴 ) = ( 𝑅t 𝐴 ) )