Metamath Proof Explorer


Theorem xrs1cmn

Description: The extended real numbers restricted to RR* \ { -oo } form a commutative monoid. They are not a group because 1 + +oo = 2 + +oo even though 1 =/= 2 . (Contributed by Mario Carneiro, 27-Nov-2014)

Ref Expression
Hypothesis xrs1mnd.1 𝑅 = ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) )
Assertion xrs1cmn 𝑅 ∈ CMnd

Proof

Step Hyp Ref Expression
1 xrs1mnd.1 𝑅 = ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) )
2 1 xrs1mnd 𝑅 ∈ Mnd
3 eldifi ( 𝑥 ∈ ( ℝ* ∖ { -∞ } ) → 𝑥 ∈ ℝ* )
4 eldifi ( 𝑦 ∈ ( ℝ* ∖ { -∞ } ) → 𝑦 ∈ ℝ* )
5 xaddcom ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑥 +𝑒 𝑦 ) = ( 𝑦 +𝑒 𝑥 ) )
6 3 4 5 syl2an ( ( 𝑥 ∈ ( ℝ* ∖ { -∞ } ) ∧ 𝑦 ∈ ( ℝ* ∖ { -∞ } ) ) → ( 𝑥 +𝑒 𝑦 ) = ( 𝑦 +𝑒 𝑥 ) )
7 6 rgen2 𝑥 ∈ ( ℝ* ∖ { -∞ } ) ∀ 𝑦 ∈ ( ℝ* ∖ { -∞ } ) ( 𝑥 +𝑒 𝑦 ) = ( 𝑦 +𝑒 𝑥 )
8 difss ( ℝ* ∖ { -∞ } ) ⊆ ℝ*
9 xrsbas * = ( Base ‘ ℝ*𝑠 )
10 1 9 ressbas2 ( ( ℝ* ∖ { -∞ } ) ⊆ ℝ* → ( ℝ* ∖ { -∞ } ) = ( Base ‘ 𝑅 ) )
11 8 10 ax-mp ( ℝ* ∖ { -∞ } ) = ( Base ‘ 𝑅 )
12 xrex * ∈ V
13 12 difexi ( ℝ* ∖ { -∞ } ) ∈ V
14 xrsadd +𝑒 = ( +g ‘ ℝ*𝑠 )
15 1 14 ressplusg ( ( ℝ* ∖ { -∞ } ) ∈ V → +𝑒 = ( +g𝑅 ) )
16 13 15 ax-mp +𝑒 = ( +g𝑅 )
17 11 16 iscmn ( 𝑅 ∈ CMnd ↔ ( 𝑅 ∈ Mnd ∧ ∀ 𝑥 ∈ ( ℝ* ∖ { -∞ } ) ∀ 𝑦 ∈ ( ℝ* ∖ { -∞ } ) ( 𝑥 +𝑒 𝑦 ) = ( 𝑦 +𝑒 𝑥 ) ) )
18 2 7 17 mpbir2an 𝑅 ∈ CMnd