Step |
Hyp |
Ref |
Expression |
1 |
|
xrsxmet.1 |
⊢ 𝐷 = ( dist ‘ ℝ*𝑠 ) |
2 |
1
|
xrsdsreval |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 𝐷 𝑦 ) = ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
3 |
|
ovres |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ( 𝐷 ↾ ( ℝ × ℝ ) ) 𝑦 ) = ( 𝑥 𝐷 𝑦 ) ) |
4 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
5 |
4
|
remetdval |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) 𝑦 ) = ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
6 |
2 3 5
|
3eqtr4d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ( 𝐷 ↾ ( ℝ × ℝ ) ) 𝑦 ) = ( 𝑥 ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) 𝑦 ) ) |
7 |
6
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( 𝑥 ( 𝐷 ↾ ( ℝ × ℝ ) ) 𝑦 ) = ( 𝑥 ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) 𝑦 ) |
8 |
1
|
xrsxmet |
⊢ 𝐷 ∈ ( ∞Met ‘ ℝ* ) |
9 |
|
xmetf |
⊢ ( 𝐷 ∈ ( ∞Met ‘ ℝ* ) → 𝐷 : ( ℝ* × ℝ* ) ⟶ ℝ* ) |
10 |
|
ffn |
⊢ ( 𝐷 : ( ℝ* × ℝ* ) ⟶ ℝ* → 𝐷 Fn ( ℝ* × ℝ* ) ) |
11 |
8 9 10
|
mp2b |
⊢ 𝐷 Fn ( ℝ* × ℝ* ) |
12 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
13 |
|
fnssres |
⊢ ( ( 𝐷 Fn ( ℝ* × ℝ* ) ∧ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) ) → ( 𝐷 ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) ) |
14 |
11 12 13
|
mp2an |
⊢ ( 𝐷 ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) |
15 |
|
cnmet |
⊢ ( abs ∘ − ) ∈ ( Met ‘ ℂ ) |
16 |
|
metf |
⊢ ( ( abs ∘ − ) ∈ ( Met ‘ ℂ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ ) |
17 |
|
ffn |
⊢ ( ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ → ( abs ∘ − ) Fn ( ℂ × ℂ ) ) |
18 |
15 16 17
|
mp2b |
⊢ ( abs ∘ − ) Fn ( ℂ × ℂ ) |
19 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
20 |
|
xpss12 |
⊢ ( ( ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( ℝ × ℝ ) ⊆ ( ℂ × ℂ ) ) |
21 |
19 19 20
|
mp2an |
⊢ ( ℝ × ℝ ) ⊆ ( ℂ × ℂ ) |
22 |
|
fnssres |
⊢ ( ( ( abs ∘ − ) Fn ( ℂ × ℂ ) ∧ ( ℝ × ℝ ) ⊆ ( ℂ × ℂ ) ) → ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) ) |
23 |
18 21 22
|
mp2an |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) |
24 |
|
eqfnov2 |
⊢ ( ( ( 𝐷 ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) ∧ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) ) → ( ( 𝐷 ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↔ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( 𝑥 ( 𝐷 ↾ ( ℝ × ℝ ) ) 𝑦 ) = ( 𝑥 ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) 𝑦 ) ) ) |
25 |
14 23 24
|
mp2an |
⊢ ( ( 𝐷 ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↔ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( 𝑥 ( 𝐷 ↾ ( ℝ × ℝ ) ) 𝑦 ) = ( 𝑥 ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) 𝑦 ) ) |
26 |
7 25
|
mpbir |
⊢ ( 𝐷 ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |