Step |
Hyp |
Ref |
Expression |
1 |
|
xrsds.d |
⊢ 𝐷 = ( dist ‘ ℝ*𝑠 ) |
2 |
|
breq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 ≤ 𝑦 ↔ 𝐴 ≤ 𝐵 ) ) |
3 |
|
id |
⊢ ( 𝑦 = 𝐵 → 𝑦 = 𝐵 ) |
4 |
|
xnegeq |
⊢ ( 𝑥 = 𝐴 → -𝑒 𝑥 = -𝑒 𝐴 ) |
5 |
3 4
|
oveqan12rd |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 +𝑒 -𝑒 𝑥 ) = ( 𝐵 +𝑒 -𝑒 𝐴 ) ) |
6 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
7 |
|
xnegeq |
⊢ ( 𝑦 = 𝐵 → -𝑒 𝑦 = -𝑒 𝐵 ) |
8 |
6 7
|
oveqan12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 +𝑒 -𝑒 𝑦 ) = ( 𝐴 +𝑒 -𝑒 𝐵 ) ) |
9 |
2 5 8
|
ifbieq12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑥 ≤ 𝑦 , ( 𝑦 +𝑒 -𝑒 𝑥 ) , ( 𝑥 +𝑒 -𝑒 𝑦 ) ) = if ( 𝐴 ≤ 𝐵 , ( 𝐵 +𝑒 -𝑒 𝐴 ) , ( 𝐴 +𝑒 -𝑒 𝐵 ) ) ) |
10 |
1
|
xrsds |
⊢ 𝐷 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( 𝑥 ≤ 𝑦 , ( 𝑦 +𝑒 -𝑒 𝑥 ) , ( 𝑥 +𝑒 -𝑒 𝑦 ) ) ) |
11 |
|
ovex |
⊢ ( 𝐵 +𝑒 -𝑒 𝐴 ) ∈ V |
12 |
|
ovex |
⊢ ( 𝐴 +𝑒 -𝑒 𝐵 ) ∈ V |
13 |
11 12
|
ifex |
⊢ if ( 𝐴 ≤ 𝐵 , ( 𝐵 +𝑒 -𝑒 𝐴 ) , ( 𝐴 +𝑒 -𝑒 𝐵 ) ) ∈ V |
14 |
9 10 13
|
ovmpoa |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 𝐷 𝐵 ) = if ( 𝐴 ≤ 𝐵 , ( 𝐵 +𝑒 -𝑒 𝐴 ) , ( 𝐴 +𝑒 -𝑒 𝐵 ) ) ) |