Step |
Hyp |
Ref |
Expression |
1 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
2 |
|
xrsadd |
⊢ +𝑒 = ( +g ‘ ℝ*𝑠 ) |
3 |
|
xrs0 |
⊢ 0 = ( 0g ‘ ℝ*𝑠 ) |
4 |
|
eqid |
⊢ ( invg ‘ ℝ*𝑠 ) = ( invg ‘ ℝ*𝑠 ) |
5 |
1 2 3 4
|
grpinvval |
⊢ ( 𝐵 ∈ ℝ* → ( ( invg ‘ ℝ*𝑠 ) ‘ 𝐵 ) = ( ℩ 𝑥 ∈ ℝ* ( 𝑥 +𝑒 𝐵 ) = 0 ) ) |
6 |
|
xnegcl |
⊢ ( 𝐵 ∈ ℝ* → -𝑒 𝐵 ∈ ℝ* ) |
7 |
|
xaddeq0 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑥 +𝑒 𝐵 ) = 0 ↔ 𝑥 = -𝑒 𝐵 ) ) |
8 |
7
|
ancoms |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( 𝑥 +𝑒 𝐵 ) = 0 ↔ 𝑥 = -𝑒 𝐵 ) ) |
9 |
6 8
|
riota5 |
⊢ ( 𝐵 ∈ ℝ* → ( ℩ 𝑥 ∈ ℝ* ( 𝑥 +𝑒 𝐵 ) = 0 ) = -𝑒 𝐵 ) |
10 |
5 9
|
eqtrd |
⊢ ( 𝐵 ∈ ℝ* → ( ( invg ‘ ℝ*𝑠 ) ‘ 𝐵 ) = -𝑒 𝐵 ) |