Metamath Proof Explorer


Theorem xrsle

Description: The ordering of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion xrsle ≤ = ( le ‘ ℝ*𝑠 )

Proof

Step Hyp Ref Expression
1 xrex * ∈ V
2 1 1 xpex ( ℝ* × ℝ* ) ∈ V
3 lerelxr ≤ ⊆ ( ℝ* × ℝ* )
4 2 3 ssexi ≤ ∈ V
5 df-xrs *𝑠 = ( { ⟨ ( Base ‘ ndx ) , ℝ* ⟩ , ⟨ ( +g ‘ ndx ) , +𝑒 ⟩ , ⟨ ( .r ‘ ndx ) , ·e ⟩ } ∪ { ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ ≤ ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( 𝑥𝑦 , ( 𝑦 +𝑒 -𝑒 𝑥 ) , ( 𝑥 +𝑒 -𝑒 𝑦 ) ) ) ⟩ } )
6 5 odrngle ( ≤ ∈ V → ≤ = ( le ‘ ℝ*𝑠 ) )
7 4 6 ax-mp ≤ = ( le ‘ ℝ*𝑠 )