Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( mulGrp ‘ ℝ*𝑠 ) = ( mulGrp ‘ ℝ*𝑠 ) |
2 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
3 |
1 2
|
mgpbas |
⊢ ℝ* = ( Base ‘ ( mulGrp ‘ ℝ*𝑠 ) ) |
4 |
3
|
a1i |
⊢ ( ⊤ → ℝ* = ( Base ‘ ( mulGrp ‘ ℝ*𝑠 ) ) ) |
5 |
|
xrsmul |
⊢ ·e = ( .r ‘ ℝ*𝑠 ) |
6 |
1 5
|
mgpplusg |
⊢ ·e = ( +g ‘ ( mulGrp ‘ ℝ*𝑠 ) ) |
7 |
6
|
a1i |
⊢ ( ⊤ → ·e = ( +g ‘ ( mulGrp ‘ ℝ*𝑠 ) ) ) |
8 |
|
xmulcl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ·e 𝑦 ) ∈ ℝ* ) |
9 |
8
|
3adant1 |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ·e 𝑦 ) ∈ ℝ* ) |
10 |
|
xmulass |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ) |
11 |
10
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ) |
12 |
|
1re |
⊢ 1 ∈ ℝ |
13 |
|
rexr |
⊢ ( 1 ∈ ℝ → 1 ∈ ℝ* ) |
14 |
12 13
|
mp1i |
⊢ ( ⊤ → 1 ∈ ℝ* ) |
15 |
|
xmulid2 |
⊢ ( 𝑥 ∈ ℝ* → ( 1 ·e 𝑥 ) = 𝑥 ) |
16 |
15
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ* ) → ( 1 ·e 𝑥 ) = 𝑥 ) |
17 |
|
xmulid1 |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 ·e 1 ) = 𝑥 ) |
18 |
17
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ* ) → ( 𝑥 ·e 1 ) = 𝑥 ) |
19 |
4 7 9 11 14 16 18
|
ismndd |
⊢ ( ⊤ → ( mulGrp ‘ ℝ*𝑠 ) ∈ Mnd ) |
20 |
|
xmulcom |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ·e 𝑦 ) = ( 𝑦 ·e 𝑥 ) ) |
21 |
20
|
3adant1 |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ·e 𝑦 ) = ( 𝑦 ·e 𝑥 ) ) |
22 |
4 7 19 21
|
iscmnd |
⊢ ( ⊤ → ( mulGrp ‘ ℝ*𝑠 ) ∈ CMnd ) |
23 |
22
|
mptru |
⊢ ( mulGrp ‘ ℝ*𝑠 ) ∈ CMnd |