Metamath Proof Explorer


Theorem xrsmgm

Description: The "additive group" of the extended reals is a magma. (Contributed by AV, 30-Jan-2020)

Ref Expression
Assertion xrsmgm *𝑠 ∈ Mgm

Proof

Step Hyp Ref Expression
1 xaddcl ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑥 +𝑒 𝑦 ) ∈ ℝ* )
2 1 rgen2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ( 𝑥 +𝑒 𝑦 ) ∈ ℝ*
3 0xr 0 ∈ ℝ*
4 xrsbas * = ( Base ‘ ℝ*𝑠 )
5 xrsadd +𝑒 = ( +g ‘ ℝ*𝑠 )
6 4 5 ismgmn0 ( 0 ∈ ℝ* → ( ℝ*𝑠 ∈ Mgm ↔ ∀ 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ( 𝑥 +𝑒 𝑦 ) ∈ ℝ* ) )
7 3 6 ax-mp ( ℝ*𝑠 ∈ Mgm ↔ ∀ 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ( 𝑥 +𝑒 𝑦 ) ∈ ℝ* )
8 2 7 mpbir *𝑠 ∈ Mgm