Metamath Proof Explorer


Theorem xrsmgmdifsgrp

Description: The "additive group" of the extended reals is a magma but not a semigroup, and therefore also not a monoid nor a group, in contrast to the "multiplicative group", see xrsmcmn . (Contributed by AV, 30-Jan-2020)

Ref Expression
Assertion xrsmgmdifsgrp *𝑠 ∈ ( Mgm ∖ Smgrp )

Proof

Step Hyp Ref Expression
1 xrsmgm *𝑠 ∈ Mgm
2 xrsnsgrp *𝑠 ∉ Smgrp
3 2 neli ¬ ℝ*𝑠 ∈ Smgrp
4 eldif ( ℝ*𝑠 ∈ ( Mgm ∖ Smgrp ) ↔ ( ℝ*𝑠 ∈ Mgm ∧ ¬ ℝ*𝑠 ∈ Smgrp ) )
5 1 3 4 mpbir2an *𝑠 ∈ ( Mgm ∖ Smgrp )