Step |
Hyp |
Ref |
Expression |
1 |
|
xrsxmet.1 |
⊢ 𝐷 = ( dist ‘ ℝ*𝑠 ) |
2 |
|
xrsmopn.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
3 |
|
elssuni |
⊢ ( 𝑥 ∈ ( ordTop ‘ ≤ ) → 𝑥 ⊆ ∪ ( ordTop ‘ ≤ ) ) |
4 |
|
letopuni |
⊢ ℝ* = ∪ ( ordTop ‘ ≤ ) |
5 |
3 4
|
sseqtrrdi |
⊢ ( 𝑥 ∈ ( ordTop ‘ ≤ ) → 𝑥 ⊆ ℝ* ) |
6 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
7 |
6
|
rexmet |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) |
8 |
|
letop |
⊢ ( ordTop ‘ ≤ ) ∈ Top |
9 |
|
reex |
⊢ ℝ ∈ V |
10 |
|
elrestr |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ ℝ ∈ V ∧ 𝑥 ∈ ( ordTop ‘ ≤ ) ) → ( 𝑥 ∩ ℝ ) ∈ ( ( ordTop ‘ ≤ ) ↾t ℝ ) ) |
11 |
8 9 10
|
mp3an12 |
⊢ ( 𝑥 ∈ ( ordTop ‘ ≤ ) → ( 𝑥 ∩ ℝ ) ∈ ( ( ordTop ‘ ≤ ) ↾t ℝ ) ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ∩ ℝ ) ∈ ( ( ordTop ‘ ≤ ) ↾t ℝ ) ) |
13 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝑥 ∩ ℝ ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ℝ ) ) |
14 |
13
|
biimpri |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ( 𝑥 ∩ ℝ ) ) |
15 |
14
|
adantll |
⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ( 𝑥 ∩ ℝ ) ) |
16 |
|
eqid |
⊢ ( ( ordTop ‘ ≤ ) ↾t ℝ ) = ( ( ordTop ‘ ≤ ) ↾t ℝ ) |
17 |
16
|
xrtgioo |
⊢ ( topGen ‘ ran (,) ) = ( ( ordTop ‘ ≤ ) ↾t ℝ ) |
18 |
|
eqid |
⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
19 |
6 18
|
tgioo |
⊢ ( topGen ‘ ran (,) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
20 |
17 19
|
eqtr3i |
⊢ ( ( ordTop ‘ ≤ ) ↾t ℝ ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
21 |
20
|
mopni2 |
⊢ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ ( 𝑥 ∩ ℝ ) ∈ ( ( ordTop ‘ ≤ ) ↾t ℝ ) ∧ 𝑦 ∈ ( 𝑥 ∩ ℝ ) ) → ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ ( 𝑥 ∩ ℝ ) ) |
22 |
7 12 15 21
|
mp3an2i |
⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) → ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ ( 𝑥 ∩ ℝ ) ) |
23 |
1
|
xrsxmet |
⊢ 𝐷 ∈ ( ∞Met ‘ ℝ* ) |
24 |
|
simplr |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑦 ∈ ℝ ) |
25 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
26 |
|
sseqin2 |
⊢ ( ℝ ⊆ ℝ* ↔ ( ℝ* ∩ ℝ ) = ℝ ) |
27 |
25 26
|
mpbi |
⊢ ( ℝ* ∩ ℝ ) = ℝ |
28 |
24 27
|
eleqtrrdi |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑦 ∈ ( ℝ* ∩ ℝ ) ) |
29 |
|
rpxr |
⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) |
30 |
29
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ* ) |
31 |
1
|
xrsdsre |
⊢ ( 𝐷 ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
32 |
31
|
eqcomi |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( 𝐷 ↾ ( ℝ × ℝ ) ) |
33 |
32
|
blres |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℝ* ) ∧ 𝑦 ∈ ( ℝ* ∩ ℝ ) ∧ 𝑟 ∈ ℝ* ) → ( 𝑦 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) = ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∩ ℝ ) ) |
34 |
23 28 30 33
|
mp3an2i |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑦 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) = ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∩ ℝ ) ) |
35 |
1
|
xrsblre |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ℝ ) |
36 |
29 35
|
sylan2 |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ+ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ℝ ) |
37 |
36
|
adantll |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ℝ ) |
38 |
|
df-ss |
⊢ ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ℝ ↔ ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∩ ℝ ) = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) |
39 |
37 38
|
sylib |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∩ ℝ ) = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) |
40 |
34 39
|
eqtrd |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑦 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) |
41 |
40
|
sseq1d |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑦 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ ( 𝑥 ∩ ℝ ) ↔ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑥 ∩ ℝ ) ) ) |
42 |
|
inss1 |
⊢ ( 𝑥 ∩ ℝ ) ⊆ 𝑥 |
43 |
|
sstr |
⊢ ( ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑥 ∩ ℝ ) ∧ ( 𝑥 ∩ ℝ ) ⊆ 𝑥 ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) |
44 |
42 43
|
mpan2 |
⊢ ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ ( 𝑥 ∩ ℝ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) |
45 |
41 44
|
syl6bi |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑦 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ ( 𝑥 ∩ ℝ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) ) |
46 |
45
|
reximdva |
⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ ( 𝑥 ∩ ℝ ) → ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) ) |
47 |
22 46
|
mpd |
⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ ℝ ) → ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) |
48 |
|
1rp |
⊢ 1 ∈ ℝ+ |
49 |
5
|
sselda |
⊢ ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ ℝ* ) |
50 |
49
|
adantr |
⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ* ) |
51 |
|
rpxr |
⊢ ( 1 ∈ ℝ+ → 1 ∈ ℝ* ) |
52 |
48 51
|
mp1i |
⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ) → 1 ∈ ℝ* ) |
53 |
|
elbl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℝ* ) ∧ 𝑦 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) 1 ) ↔ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ) |
54 |
23 50 52 53
|
mp3an2i |
⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) 1 ) ↔ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ) |
55 |
|
simp2 |
⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) → ¬ 𝑦 ∈ ℝ ) |
56 |
49
|
3ad2ant1 |
⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) → 𝑦 ∈ ℝ* ) |
57 |
56
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → 𝑦 ∈ ℝ* ) |
58 |
|
simpl3l |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → 𝑧 ∈ ℝ* ) |
59 |
|
xmetcl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℝ* ) ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( 𝑦 𝐷 𝑧 ) ∈ ℝ* ) |
60 |
23 57 58 59
|
mp3an2i |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( 𝑦 𝐷 𝑧 ) ∈ ℝ* ) |
61 |
|
1red |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → 1 ∈ ℝ ) |
62 |
|
xmetge0 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℝ* ) ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → 0 ≤ ( 𝑦 𝐷 𝑧 ) ) |
63 |
23 57 58 62
|
mp3an2i |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → 0 ≤ ( 𝑦 𝐷 𝑧 ) ) |
64 |
|
simpl3r |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( 𝑦 𝐷 𝑧 ) < 1 ) |
65 |
|
1xr |
⊢ 1 ∈ ℝ* |
66 |
|
xrltle |
⊢ ( ( ( 𝑦 𝐷 𝑧 ) ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( ( 𝑦 𝐷 𝑧 ) < 1 → ( 𝑦 𝐷 𝑧 ) ≤ 1 ) ) |
67 |
60 65 66
|
sylancl |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( ( 𝑦 𝐷 𝑧 ) < 1 → ( 𝑦 𝐷 𝑧 ) ≤ 1 ) ) |
68 |
64 67
|
mpd |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( 𝑦 𝐷 𝑧 ) ≤ 1 ) |
69 |
|
xrrege0 |
⊢ ( ( ( ( 𝑦 𝐷 𝑧 ) ∈ ℝ* ∧ 1 ∈ ℝ ) ∧ ( 0 ≤ ( 𝑦 𝐷 𝑧 ) ∧ ( 𝑦 𝐷 𝑧 ) ≤ 1 ) ) → ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) |
70 |
60 61 63 68 69
|
syl22anc |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) |
71 |
|
simpr |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → 𝑦 ≠ 𝑧 ) |
72 |
1
|
xrsdsreclb |
⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ∧ 𝑦 ≠ 𝑧 ) → ( ( 𝑦 𝐷 𝑧 ) ∈ ℝ ↔ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ) |
73 |
57 58 71 72
|
syl3anc |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( ( 𝑦 𝐷 𝑧 ) ∈ ℝ ↔ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) ) |
74 |
70 73
|
mpbid |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) |
75 |
74
|
simpld |
⊢ ( ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) ∧ 𝑦 ≠ 𝑧 ) → 𝑦 ∈ ℝ ) |
76 |
75
|
ex |
⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) → ( 𝑦 ≠ 𝑧 → 𝑦 ∈ ℝ ) ) |
77 |
76
|
necon1bd |
⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) → ( ¬ 𝑦 ∈ ℝ → 𝑦 = 𝑧 ) ) |
78 |
|
simp1r |
⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) → 𝑦 ∈ 𝑥 ) |
79 |
|
elequ1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) |
80 |
78 79
|
syl5ibcom |
⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) → ( 𝑦 = 𝑧 → 𝑧 ∈ 𝑥 ) ) |
81 |
77 80
|
syld |
⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) → ( ¬ 𝑦 ∈ ℝ → 𝑧 ∈ 𝑥 ) ) |
82 |
55 81
|
mpd |
⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ∧ ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) ) → 𝑧 ∈ 𝑥 ) |
83 |
82
|
3expia |
⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ) → ( ( 𝑧 ∈ ℝ* ∧ ( 𝑦 𝐷 𝑧 ) < 1 ) → 𝑧 ∈ 𝑥 ) ) |
84 |
54 83
|
sylbid |
⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) 1 ) → 𝑧 ∈ 𝑥 ) ) |
85 |
84
|
ssrdv |
⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ) → ( 𝑦 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑥 ) |
86 |
|
oveq2 |
⊢ ( 𝑟 = 1 → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ( 𝑦 ( ball ‘ 𝐷 ) 1 ) ) |
87 |
86
|
sseq1d |
⊢ ( 𝑟 = 1 → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ↔ ( 𝑦 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑥 ) ) |
88 |
87
|
rspcev |
⊢ ( ( 1 ∈ ℝ+ ∧ ( 𝑦 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑥 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) |
89 |
48 85 88
|
sylancr |
⊢ ( ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ 𝑦 ∈ ℝ ) → ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) |
90 |
47 89
|
pm2.61dan |
⊢ ( ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) |
91 |
90
|
ralrimiva |
⊢ ( 𝑥 ∈ ( ordTop ‘ ≤ ) → ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) |
92 |
2
|
elmopn2 |
⊢ ( 𝐷 ∈ ( ∞Met ‘ ℝ* ) → ( 𝑥 ∈ 𝐽 ↔ ( 𝑥 ⊆ ℝ* ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) ) ) |
93 |
23 92
|
ax-mp |
⊢ ( 𝑥 ∈ 𝐽 ↔ ( 𝑥 ⊆ ℝ* ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) ) |
94 |
5 91 93
|
sylanbrc |
⊢ ( 𝑥 ∈ ( ordTop ‘ ≤ ) → 𝑥 ∈ 𝐽 ) |
95 |
94
|
ssriv |
⊢ ( ordTop ‘ ≤ ) ⊆ 𝐽 |