Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑛 = 0 → ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 0 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
2 |
|
oveq1 |
⊢ ( 𝑛 = 0 → ( 𝑛 ·e 𝐵 ) = ( 0 ·e 𝐵 ) ) |
3 |
1 2
|
eqeq12d |
⊢ ( 𝑛 = 0 → ( ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑛 ·e 𝐵 ) ↔ ( 0 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 0 ·e 𝐵 ) ) ) |
4 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
5 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ·e 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑛 ·e 𝐵 ) ↔ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) ) |
7 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
8 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑛 ·e 𝐵 ) = ( ( 𝑚 + 1 ) ·e 𝐵 ) ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑛 ·e 𝐵 ) ↔ ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( 𝑚 + 1 ) ·e 𝐵 ) ) ) |
10 |
|
oveq1 |
⊢ ( 𝑛 = - 𝑚 → ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( - 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
11 |
|
oveq1 |
⊢ ( 𝑛 = - 𝑚 → ( 𝑛 ·e 𝐵 ) = ( - 𝑚 ·e 𝐵 ) ) |
12 |
10 11
|
eqeq12d |
⊢ ( 𝑛 = - 𝑚 → ( ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑛 ·e 𝐵 ) ↔ ( - 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( - 𝑚 ·e 𝐵 ) ) ) |
13 |
|
oveq1 |
⊢ ( 𝑛 = 𝐴 → ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝐴 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
14 |
|
oveq1 |
⊢ ( 𝑛 = 𝐴 → ( 𝑛 ·e 𝐵 ) = ( 𝐴 ·e 𝐵 ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝑛 = 𝐴 → ( ( 𝑛 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑛 ·e 𝐵 ) ↔ ( 𝐴 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝐴 ·e 𝐵 ) ) ) |
16 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
17 |
|
xrs0 |
⊢ 0 = ( 0g ‘ ℝ*𝑠 ) |
18 |
|
eqid |
⊢ ( .g ‘ ℝ*𝑠 ) = ( .g ‘ ℝ*𝑠 ) |
19 |
16 17 18
|
mulg0 |
⊢ ( 𝐵 ∈ ℝ* → ( 0 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = 0 ) |
20 |
|
xmul02 |
⊢ ( 𝐵 ∈ ℝ* → ( 0 ·e 𝐵 ) = 0 ) |
21 |
19 20
|
eqtr4d |
⊢ ( 𝐵 ∈ ℝ* → ( 0 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 0 ·e 𝐵 ) ) |
22 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) |
23 |
22
|
oveq1d |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) +𝑒 𝐵 ) = ( ( 𝑚 ·e 𝐵 ) +𝑒 𝐵 ) ) |
24 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ ) |
25 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ∈ ℕ ) → 𝐵 ∈ ℝ* ) |
26 |
|
xrsadd |
⊢ +𝑒 = ( +g ‘ ℝ*𝑠 ) |
27 |
16 18 26
|
mulgnnp1 |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) +𝑒 𝐵 ) ) |
28 |
24 25 27
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) +𝑒 𝐵 ) ) |
29 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = 0 ) → 𝑚 = 0 ) |
30 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = 0 ) → 𝐵 ∈ ℝ* ) |
31 |
|
xaddid2 |
⊢ ( 𝐵 ∈ ℝ* → ( 0 +𝑒 𝐵 ) = 𝐵 ) |
32 |
31
|
adantl |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( 0 +𝑒 𝐵 ) = 𝐵 ) |
33 |
|
simpl |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → 𝑚 = 0 ) |
34 |
33
|
oveq1d |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 0 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
35 |
19
|
adantl |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( 0 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = 0 ) |
36 |
34 35
|
eqtrd |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = 0 ) |
37 |
36
|
oveq1d |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) +𝑒 𝐵 ) = ( 0 +𝑒 𝐵 ) ) |
38 |
33
|
oveq1d |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( 𝑚 + 1 ) = ( 0 + 1 ) ) |
39 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
40 |
38 39
|
eqtrdi |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( 𝑚 + 1 ) = 1 ) |
41 |
40
|
oveq1d |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 1 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
42 |
16 18
|
mulg1 |
⊢ ( 𝐵 ∈ ℝ* → ( 1 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = 𝐵 ) |
43 |
42
|
adantl |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( 1 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = 𝐵 ) |
44 |
41 43
|
eqtrd |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = 𝐵 ) |
45 |
32 37 44
|
3eqtr4rd |
⊢ ( ( 𝑚 = 0 ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) +𝑒 𝐵 ) ) |
46 |
29 30 45
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = 0 ) → ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) +𝑒 𝐵 ) ) |
47 |
|
simpr |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℕ0 ) |
48 |
|
elnn0 |
⊢ ( 𝑚 ∈ ℕ0 ↔ ( 𝑚 ∈ ℕ ∨ 𝑚 = 0 ) ) |
49 |
47 48
|
sylib |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 ∈ ℕ ∨ 𝑚 = 0 ) ) |
50 |
28 46 49
|
mpjaodan |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) +𝑒 𝐵 ) ) |
51 |
50
|
adantr |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) +𝑒 𝐵 ) ) |
52 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
53 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
54 |
52 53
|
sstri |
⊢ ℕ0 ⊆ ℝ* |
55 |
47
|
adantr |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → 𝑚 ∈ ℕ0 ) |
56 |
54 55
|
sselid |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → 𝑚 ∈ ℝ* ) |
57 |
|
nn0ge0 |
⊢ ( 𝑚 ∈ ℕ0 → 0 ≤ 𝑚 ) |
58 |
57
|
ad2antlr |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → 0 ≤ 𝑚 ) |
59 |
|
1xr |
⊢ 1 ∈ ℝ* |
60 |
59
|
a1i |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → 1 ∈ ℝ* ) |
61 |
|
0le1 |
⊢ 0 ≤ 1 |
62 |
61
|
a1i |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → 0 ≤ 1 ) |
63 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
64 |
|
xadddi2r |
⊢ ( ( ( 𝑚 ∈ ℝ* ∧ 0 ≤ 𝑚 ) ∧ ( 1 ∈ ℝ* ∧ 0 ≤ 1 ) ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑚 +𝑒 1 ) ·e 𝐵 ) = ( ( 𝑚 ·e 𝐵 ) +𝑒 ( 1 ·e 𝐵 ) ) ) |
65 |
56 58 60 62 63 64
|
syl221anc |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( ( 𝑚 +𝑒 1 ) ·e 𝐵 ) = ( ( 𝑚 ·e 𝐵 ) +𝑒 ( 1 ·e 𝐵 ) ) ) |
66 |
52 55
|
sselid |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → 𝑚 ∈ ℝ ) |
67 |
|
1re |
⊢ 1 ∈ ℝ |
68 |
67
|
a1i |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → 1 ∈ ℝ ) |
69 |
|
rexadd |
⊢ ( ( 𝑚 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑚 +𝑒 1 ) = ( 𝑚 + 1 ) ) |
70 |
66 68 69
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( 𝑚 +𝑒 1 ) = ( 𝑚 + 1 ) ) |
71 |
70
|
oveq1d |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( ( 𝑚 +𝑒 1 ) ·e 𝐵 ) = ( ( 𝑚 + 1 ) ·e 𝐵 ) ) |
72 |
|
xmulid2 |
⊢ ( 𝐵 ∈ ℝ* → ( 1 ·e 𝐵 ) = 𝐵 ) |
73 |
63 72
|
syl |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( 1 ·e 𝐵 ) = 𝐵 ) |
74 |
73
|
oveq2d |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( ( 𝑚 ·e 𝐵 ) +𝑒 ( 1 ·e 𝐵 ) ) = ( ( 𝑚 ·e 𝐵 ) +𝑒 𝐵 ) ) |
75 |
65 71 74
|
3eqtr3d |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( ( 𝑚 + 1 ) ·e 𝐵 ) = ( ( 𝑚 ·e 𝐵 ) +𝑒 𝐵 ) ) |
76 |
23 51 75
|
3eqtr4d |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( 𝑚 + 1 ) ·e 𝐵 ) ) |
77 |
76
|
exp31 |
⊢ ( 𝐵 ∈ ℝ* → ( 𝑚 ∈ ℕ0 → ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) → ( ( 𝑚 + 1 ) ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( 𝑚 + 1 ) ·e 𝐵 ) ) ) ) |
78 |
|
xnegeq |
⊢ ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) → -𝑒 ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = -𝑒 ( 𝑚 ·e 𝐵 ) ) |
79 |
78
|
adantl |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → -𝑒 ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = -𝑒 ( 𝑚 ·e 𝐵 ) ) |
80 |
|
eqid |
⊢ ( invg ‘ ℝ*𝑠 ) = ( invg ‘ ℝ*𝑠 ) |
81 |
16 18 80
|
mulgnegnn |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ* ) → ( - 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( invg ‘ ℝ*𝑠 ) ‘ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) ) |
82 |
81
|
ancoms |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → ( - 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( ( invg ‘ ℝ*𝑠 ) ‘ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) ) |
83 |
|
xrsex |
⊢ ℝ*𝑠 ∈ V |
84 |
83
|
a1i |
⊢ ( 𝑚 ∈ ℕ → ℝ*𝑠 ∈ V ) |
85 |
|
ssidd |
⊢ ( 𝑚 ∈ ℕ → ℝ* ⊆ ℝ* ) |
86 |
|
simp2 |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → 𝑥 ∈ ℝ* ) |
87 |
|
simp3 |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → 𝑦 ∈ ℝ* ) |
88 |
86 87
|
xaddcld |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 +𝑒 𝑦 ) ∈ ℝ* ) |
89 |
16 18 26 84 85 88
|
mulgnnsubcl |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ* ) → ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ∈ ℝ* ) |
90 |
89
|
3anidm12 |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ* ) → ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ∈ ℝ* ) |
91 |
90
|
ancoms |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ∈ ℝ* ) |
92 |
|
xrsinvgval |
⊢ ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ∈ ℝ* → ( ( invg ‘ ℝ*𝑠 ) ‘ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) = -𝑒 ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
93 |
91 92
|
syl |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → ( ( invg ‘ ℝ*𝑠 ) ‘ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) = -𝑒 ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
94 |
82 93
|
eqtrd |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → ( - 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = -𝑒 ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
95 |
94
|
adantr |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( - 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = -𝑒 ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) ) |
96 |
|
nnre |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ ) |
97 |
96
|
adantl |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ ) |
98 |
|
rexneg |
⊢ ( 𝑚 ∈ ℝ → -𝑒 𝑚 = - 𝑚 ) |
99 |
97 98
|
syl |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → -𝑒 𝑚 = - 𝑚 ) |
100 |
99
|
oveq1d |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → ( -𝑒 𝑚 ·e 𝐵 ) = ( - 𝑚 ·e 𝐵 ) ) |
101 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
102 |
101 53
|
sstri |
⊢ ℕ ⊆ ℝ* |
103 |
|
simpr |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ ) |
104 |
102 103
|
sselid |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ* ) |
105 |
|
simpl |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → 𝐵 ∈ ℝ* ) |
106 |
|
xmulneg1 |
⊢ ( ( 𝑚 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝑚 ·e 𝐵 ) = -𝑒 ( 𝑚 ·e 𝐵 ) ) |
107 |
104 105 106
|
syl2anc |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → ( -𝑒 𝑚 ·e 𝐵 ) = -𝑒 ( 𝑚 ·e 𝐵 ) ) |
108 |
100 107
|
eqtr3d |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) → ( - 𝑚 ·e 𝐵 ) = -𝑒 ( 𝑚 ·e 𝐵 ) ) |
109 |
108
|
adantr |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( - 𝑚 ·e 𝐵 ) = -𝑒 ( 𝑚 ·e 𝐵 ) ) |
110 |
79 95 109
|
3eqtr4d |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) ) → ( - 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( - 𝑚 ·e 𝐵 ) ) |
111 |
110
|
exp31 |
⊢ ( 𝐵 ∈ ℝ* → ( 𝑚 ∈ ℕ → ( ( 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝑚 ·e 𝐵 ) → ( - 𝑚 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( - 𝑚 ·e 𝐵 ) ) ) ) |
112 |
3 6 9 12 15 21 77 111
|
zindd |
⊢ ( 𝐵 ∈ ℝ* → ( 𝐴 ∈ ℤ → ( 𝐴 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝐴 ·e 𝐵 ) ) ) |
113 |
112
|
impcom |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ( .g ‘ ℝ*𝑠 ) 𝐵 ) = ( 𝐴 ·e 𝐵 ) ) |