| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrsex |
⊢ ℝ*𝑠 ∈ V |
| 2 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
| 3 |
|
eqid |
⊢ ( lub ‘ ℝ*𝑠 ) = ( lub ‘ ℝ*𝑠 ) |
| 4 |
|
eqid |
⊢ ( 1. ‘ ℝ*𝑠 ) = ( 1. ‘ ℝ*𝑠 ) |
| 5 |
2 3 4
|
p1val |
⊢ ( ℝ*𝑠 ∈ V → ( 1. ‘ ℝ*𝑠 ) = ( ( lub ‘ ℝ*𝑠 ) ‘ ℝ* ) ) |
| 6 |
1 5
|
ax-mp |
⊢ ( 1. ‘ ℝ*𝑠 ) = ( ( lub ‘ ℝ*𝑠 ) ‘ ℝ* ) |
| 7 |
|
ssid |
⊢ ℝ* ⊆ ℝ* |
| 8 |
|
xrslt |
⊢ < = ( lt ‘ ℝ*𝑠 ) |
| 9 |
|
xrstos |
⊢ ℝ*𝑠 ∈ Toset |
| 10 |
9
|
a1i |
⊢ ( ℝ* ⊆ ℝ* → ℝ*𝑠 ∈ Toset ) |
| 11 |
|
id |
⊢ ( ℝ* ⊆ ℝ* → ℝ* ⊆ ℝ* ) |
| 12 |
2 8 10 11
|
toslub |
⊢ ( ℝ* ⊆ ℝ* → ( ( lub ‘ ℝ*𝑠 ) ‘ ℝ* ) = sup ( ℝ* , ℝ* , < ) ) |
| 13 |
7 12
|
ax-mp |
⊢ ( ( lub ‘ ℝ*𝑠 ) ‘ ℝ* ) = sup ( ℝ* , ℝ* , < ) |
| 14 |
|
xrsup |
⊢ sup ( ℝ* , ℝ* , < ) = +∞ |
| 15 |
6 13 14
|
3eqtrri |
⊢ +∞ = ( 1. ‘ ℝ*𝑠 ) |