Metamath Proof Explorer


Theorem xrstopn

Description: The topology component of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion xrstopn ( ordTop ‘ ≤ ) = ( TopOpen ‘ ℝ*𝑠 )

Proof

Step Hyp Ref Expression
1 letopon ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* )
2 xrsbas * = ( Base ‘ ℝ*𝑠 )
3 xrstset ( ordTop ‘ ≤ ) = ( TopSet ‘ ℝ*𝑠 )
4 2 3 topontopn ( ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) → ( ordTop ‘ ≤ ) = ( TopOpen ‘ ℝ*𝑠 ) )
5 1 4 ax-mp ( ordTop ‘ ≤ ) = ( TopOpen ‘ ℝ*𝑠 )