Metamath Proof Explorer


Theorem xrstos

Description: The extended real numbers form a toset. (Contributed by Thierry Arnoux, 15-Feb-2018)

Ref Expression
Assertion xrstos *𝑠 ∈ Toset

Proof

Step Hyp Ref Expression
1 xrsex *𝑠 ∈ V
2 xrsbas * = ( Base ‘ ℝ*𝑠 )
3 xrsle ≤ = ( le ‘ ℝ*𝑠 )
4 xrleid ( 𝑥 ∈ ℝ*𝑥𝑥 )
5 xrletri3 ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑥 = 𝑦 ↔ ( 𝑥𝑦𝑦𝑥 ) ) )
6 5 biimprd ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( ( 𝑥𝑦𝑦𝑥 ) → 𝑥 = 𝑦 ) )
7 xrletr ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ* ) → ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
8 1 2 3 4 6 7 isposi *𝑠 ∈ Poset
9 xrletri ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑥𝑦𝑦𝑥 ) )
10 9 rgen2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ( 𝑥𝑦𝑦𝑥 )
11 2 3 istos ( ℝ*𝑠 ∈ Toset ↔ ( ℝ*𝑠 ∈ Poset ∧ ∀ 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ( 𝑥𝑦𝑦𝑥 ) ) )
12 8 10 11 mpbir2an *𝑠 ∈ Toset