Step |
Hyp |
Ref |
Expression |
1 |
|
xrsex |
⊢ ℝ*𝑠 ∈ V |
2 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
3 |
|
xrsle |
⊢ ≤ = ( le ‘ ℝ*𝑠 ) |
4 |
|
xrleid |
⊢ ( 𝑥 ∈ ℝ* → 𝑥 ≤ 𝑥 ) |
5 |
|
xrletri3 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 = 𝑦 ↔ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) ) |
6 |
5
|
biimprd |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ) |
7 |
|
xrletr |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) |
8 |
1 2 3 4 6 7
|
isposi |
⊢ ℝ*𝑠 ∈ Poset |
9 |
|
xrletri |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) |
10 |
9
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) |
11 |
2 3
|
istos |
⊢ ( ℝ*𝑠 ∈ Toset ↔ ( ℝ*𝑠 ∈ Poset ∧ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) |
12 |
8 10 11
|
mpbir2an |
⊢ ℝ*𝑠 ∈ Toset |