Metamath Proof Explorer


Theorem xrstps

Description: The extended real number structure is a topological space. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion xrstps *𝑠 ∈ TopSp

Proof

Step Hyp Ref Expression
1 letopon ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* )
2 xrsbas * = ( Base ‘ ℝ*𝑠 )
3 xrstset ( ordTop ‘ ≤ ) = ( TopSet ‘ ℝ*𝑠 )
4 2 3 tsettps ( ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) → ℝ*𝑠 ∈ TopSp )
5 1 4 ax-mp *𝑠 ∈ TopSp