| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							xrsupssd.1 | 
							⊢ ( 𝜑  →  𝐵  ⊆  𝐶 )  | 
						
						
							| 2 | 
							
								
							 | 
							xrsupssd.2 | 
							⊢ ( 𝜑  →  𝐶  ⊆  ℝ* )  | 
						
						
							| 3 | 
							
								
							 | 
							xrltso | 
							⊢  <   Or  ℝ*  | 
						
						
							| 4 | 
							
								3
							 | 
							a1i | 
							⊢ ( 𝜑  →   <   Or  ℝ* )  | 
						
						
							| 5 | 
							
								1 2
							 | 
							sstrd | 
							⊢ ( 𝜑  →  𝐵  ⊆  ℝ* )  | 
						
						
							| 6 | 
							
								
							 | 
							xrsupss | 
							⊢ ( 𝐵  ⊆  ℝ*  →  ∃ 𝑥  ∈  ℝ* ( ∀ 𝑦  ∈  𝐵 ¬  𝑥  <  𝑦  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑦  <  𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦  <  𝑧 ) ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ* ( ∀ 𝑦  ∈  𝐵 ¬  𝑥  <  𝑦  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑦  <  𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦  <  𝑧 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							xrsupss | 
							⊢ ( 𝐶  ⊆  ℝ*  →  ∃ 𝑥  ∈  ℝ* ( ∀ 𝑦  ∈  𝐶 ¬  𝑥  <  𝑦  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑦  <  𝑥  →  ∃ 𝑧  ∈  𝐶 𝑦  <  𝑧 ) ) )  | 
						
						
							| 9 | 
							
								2 8
							 | 
							syl | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ* ( ∀ 𝑦  ∈  𝐶 ¬  𝑥  <  𝑦  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑦  <  𝑥  →  ∃ 𝑧  ∈  𝐶 𝑦  <  𝑧 ) ) )  | 
						
						
							| 10 | 
							
								4 1 2 7 9
							 | 
							supssd | 
							⊢ ( 𝜑  →  ¬  sup ( 𝐶 ,  ℝ* ,   <  )  <  sup ( 𝐵 ,  ℝ* ,   <  ) )  | 
						
						
							| 11 | 
							
								4 7
							 | 
							supcl | 
							⊢ ( 𝜑  →  sup ( 𝐵 ,  ℝ* ,   <  )  ∈  ℝ* )  | 
						
						
							| 12 | 
							
								4 9
							 | 
							supcl | 
							⊢ ( 𝜑  →  sup ( 𝐶 ,  ℝ* ,   <  )  ∈  ℝ* )  | 
						
						
							| 13 | 
							
								
							 | 
							xrlenlt | 
							⊢ ( ( sup ( 𝐵 ,  ℝ* ,   <  )  ∈  ℝ*  ∧  sup ( 𝐶 ,  ℝ* ,   <  )  ∈  ℝ* )  →  ( sup ( 𝐵 ,  ℝ* ,   <  )  ≤  sup ( 𝐶 ,  ℝ* ,   <  )  ↔  ¬  sup ( 𝐶 ,  ℝ* ,   <  )  <  sup ( 𝐵 ,  ℝ* ,   <  ) ) )  | 
						
						
							| 14 | 
							
								11 12 13
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( sup ( 𝐵 ,  ℝ* ,   <  )  ≤  sup ( 𝐶 ,  ℝ* ,   <  )  ↔  ¬  sup ( 𝐶 ,  ℝ* ,   <  )  <  sup ( 𝐵 ,  ℝ* ,   <  ) ) )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							mpbird | 
							⊢ ( 𝜑  →  sup ( 𝐵 ,  ℝ* ,   <  )  ≤  sup ( 𝐶 ,  ℝ* ,   <  ) )  |