Step |
Hyp |
Ref |
Expression |
1 |
|
raleq |
⊢ ( 𝐴 = ∅ → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ↔ ∀ 𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ) ) |
2 |
|
rexeq |
⊢ ( 𝐴 = ∅ → ( ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) |
3 |
2
|
imbi2d |
⊢ ( 𝐴 = ∅ → ( ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) ) |
4 |
3
|
ralbidv |
⊢ ( 𝐴 = ∅ → ( ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) ) |
5 |
1 4
|
anbi12d |
⊢ ( 𝐴 = ∅ → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝐴 = ∅ → ( ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ↔ ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) ) ) |
7 |
|
sup3 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
8 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
9 |
8
|
anim1i |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) → ( 𝑥 ∈ ℝ* ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
10 |
9
|
reximi2 |
⊢ ( ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
11 |
7 10
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
12 |
|
elxr |
⊢ ( 𝑦 ∈ ℝ* ↔ ( 𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞ ) ) |
13 |
|
simpr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) → ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
14 |
|
pnfnlt |
⊢ ( 𝑥 ∈ ℝ* → ¬ +∞ < 𝑥 ) |
15 |
14
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 = +∞ ) → ¬ +∞ < 𝑥 ) |
16 |
|
breq1 |
⊢ ( 𝑦 = +∞ → ( 𝑦 < 𝑥 ↔ +∞ < 𝑥 ) ) |
17 |
16
|
notbid |
⊢ ( 𝑦 = +∞ → ( ¬ 𝑦 < 𝑥 ↔ ¬ +∞ < 𝑥 ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 = +∞ ) → ( ¬ 𝑦 < 𝑥 ↔ ¬ +∞ < 𝑥 ) ) |
19 |
15 18
|
mpbird |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 = +∞ ) → ¬ 𝑦 < 𝑥 ) |
20 |
19
|
pm2.21d |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 = +∞ ) → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
21 |
20
|
ex |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑦 = +∞ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
22 |
21
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) → ( 𝑦 = +∞ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
23 |
|
ssel |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ℝ ) ) |
24 |
|
mnflt |
⊢ ( 𝑧 ∈ ℝ → -∞ < 𝑧 ) |
25 |
23 24
|
syl6 |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑧 ∈ 𝐴 → -∞ < 𝑧 ) ) |
26 |
25
|
ancld |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑧 ∈ 𝐴 → ( 𝑧 ∈ 𝐴 ∧ -∞ < 𝑧 ) ) ) |
27 |
26
|
eximdv |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑧 𝑧 ∈ 𝐴 → ∃ 𝑧 ( 𝑧 ∈ 𝐴 ∧ -∞ < 𝑧 ) ) ) |
28 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) |
29 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝐴 -∞ < 𝑧 ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐴 ∧ -∞ < 𝑧 ) ) |
30 |
27 28 29
|
3imtr4g |
⊢ ( 𝐴 ⊆ ℝ → ( 𝐴 ≠ ∅ → ∃ 𝑧 ∈ 𝐴 -∞ < 𝑧 ) ) |
31 |
30
|
imp |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ∃ 𝑧 ∈ 𝐴 -∞ < 𝑧 ) |
32 |
31
|
a1d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( -∞ < 𝑥 → ∃ 𝑧 ∈ 𝐴 -∞ < 𝑧 ) ) |
33 |
32
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ 𝑦 = -∞ ) → ( -∞ < 𝑥 → ∃ 𝑧 ∈ 𝐴 -∞ < 𝑧 ) ) |
34 |
|
breq1 |
⊢ ( 𝑦 = -∞ → ( 𝑦 < 𝑥 ↔ -∞ < 𝑥 ) ) |
35 |
|
breq1 |
⊢ ( 𝑦 = -∞ → ( 𝑦 < 𝑧 ↔ -∞ < 𝑧 ) ) |
36 |
35
|
rexbidv |
⊢ ( 𝑦 = -∞ → ( ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 -∞ < 𝑧 ) ) |
37 |
34 36
|
imbi12d |
⊢ ( 𝑦 = -∞ → ( ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ( -∞ < 𝑥 → ∃ 𝑧 ∈ 𝐴 -∞ < 𝑧 ) ) ) |
38 |
37
|
adantl |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ 𝑦 = -∞ ) → ( ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ( -∞ < 𝑥 → ∃ 𝑧 ∈ 𝐴 -∞ < 𝑧 ) ) ) |
39 |
33 38
|
mpbird |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ 𝑦 = -∞ ) → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
40 |
39
|
ex |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) → ( 𝑦 = -∞ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
41 |
40
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) → ( 𝑦 = -∞ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
42 |
13 22 41
|
3jaod |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) → ( ( 𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞ ) → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
43 |
12 42
|
syl5bi |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) → ( 𝑦 ∈ ℝ* → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
44 |
43
|
ex |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) → ( ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) → ( 𝑦 ∈ ℝ* → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
45 |
44
|
ralimdv2 |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) → ( ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
46 |
45
|
anim2d |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
47 |
46
|
reximdva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
48 |
47
|
3adant3 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
49 |
11 48
|
mpd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
50 |
49
|
3expa |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
51 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
52 |
|
rexnal |
⊢ ( ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑥 ↔ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
53 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
54 |
|
letric |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑦 ≤ 𝑥 ∨ 𝑥 ≤ 𝑦 ) ) |
55 |
54
|
ord |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑦 ≤ 𝑥 → 𝑥 ≤ 𝑦 ) ) |
56 |
53 55
|
sylan |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑦 ≤ 𝑥 → 𝑥 ≤ 𝑦 ) ) |
57 |
56
|
an32s |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ¬ 𝑦 ≤ 𝑥 → 𝑥 ≤ 𝑦 ) ) |
58 |
57
|
reximdva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
59 |
52 58
|
syl5bir |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ¬ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
60 |
59
|
ralimdva |
⊢ ( 𝐴 ⊆ ℝ → ( ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
61 |
60
|
imp |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
62 |
51 61
|
sylan2br |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
63 |
|
breq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑧 ) ) |
64 |
63
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 ) |
65 |
64
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 ) |
66 |
62 65
|
sylib |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 ) |
67 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
68 |
|
ssel |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ ) ) |
69 |
|
rexr |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* ) |
70 |
|
pnfnlt |
⊢ ( 𝑦 ∈ ℝ* → ¬ +∞ < 𝑦 ) |
71 |
69 70
|
syl |
⊢ ( 𝑦 ∈ ℝ → ¬ +∞ < 𝑦 ) |
72 |
68 71
|
syl6 |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑦 ∈ 𝐴 → ¬ +∞ < 𝑦 ) ) |
73 |
72
|
ralrimiv |
⊢ ( 𝐴 ⊆ ℝ → ∀ 𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ) |
74 |
73
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 ) → ∀ 𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ) |
75 |
|
peano2re |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 + 1 ) ∈ ℝ ) |
76 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ≤ 𝑧 ↔ ( 𝑦 + 1 ) ≤ 𝑧 ) ) |
77 |
76
|
rexbidv |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 ( 𝑦 + 1 ) ≤ 𝑧 ) ) |
78 |
77
|
rspcva |
⊢ ( ( ( 𝑦 + 1 ) ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 ) → ∃ 𝑧 ∈ 𝐴 ( 𝑦 + 1 ) ≤ 𝑧 ) |
79 |
78
|
adantrr |
⊢ ( ( ( 𝑦 + 1 ) ∈ ℝ ∧ ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 ∧ 𝐴 ⊆ ℝ ) ) → ∃ 𝑧 ∈ 𝐴 ( 𝑦 + 1 ) ≤ 𝑧 ) |
80 |
79
|
ancoms |
⊢ ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑦 + 1 ) ∈ ℝ ) → ∃ 𝑧 ∈ 𝐴 ( 𝑦 + 1 ) ≤ 𝑧 ) |
81 |
75 80
|
sylan2 |
⊢ ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ ℝ ) → ∃ 𝑧 ∈ 𝐴 ( 𝑦 + 1 ) ≤ 𝑧 ) |
82 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℝ ) |
83 |
|
ltp1 |
⊢ ( 𝑦 ∈ ℝ → 𝑦 < ( 𝑦 + 1 ) ) |
84 |
83
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → 𝑦 < ( 𝑦 + 1 ) ) |
85 |
75
|
ancli |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 ∈ ℝ ∧ ( 𝑦 + 1 ) ∈ ℝ ) ) |
86 |
|
ltletr |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝑦 + 1 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑦 < ( 𝑦 + 1 ) ∧ ( 𝑦 + 1 ) ≤ 𝑧 ) → 𝑦 < 𝑧 ) ) |
87 |
86
|
3expa |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( 𝑦 + 1 ) ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑦 < ( 𝑦 + 1 ) ∧ ( 𝑦 + 1 ) ≤ 𝑧 ) → 𝑦 < 𝑧 ) ) |
88 |
85 87
|
sylan |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑦 < ( 𝑦 + 1 ) ∧ ( 𝑦 + 1 ) ≤ 𝑧 ) → 𝑦 < 𝑧 ) ) |
89 |
84 88
|
mpand |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑦 + 1 ) ≤ 𝑧 → 𝑦 < 𝑧 ) ) |
90 |
89
|
ancoms |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 + 1 ) ≤ 𝑧 → 𝑦 < 𝑧 ) ) |
91 |
82 90
|
sylan |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 + 1 ) ≤ 𝑧 → 𝑦 < 𝑧 ) ) |
92 |
91
|
an32s |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑦 + 1 ) ≤ 𝑧 → 𝑦 < 𝑧 ) ) |
93 |
92
|
reximdva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑧 ∈ 𝐴 ( 𝑦 + 1 ) ≤ 𝑧 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
94 |
93
|
adantll |
⊢ ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑧 ∈ 𝐴 ( 𝑦 + 1 ) ≤ 𝑧 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
95 |
81 94
|
mpd |
⊢ ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ ℝ ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) |
96 |
95
|
exp31 |
⊢ ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 → ( 𝐴 ⊆ ℝ → ( 𝑦 ∈ ℝ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
97 |
96
|
a1dd |
⊢ ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 → ( 𝐴 ⊆ ℝ → ( 𝑦 < +∞ → ( 𝑦 ∈ ℝ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
98 |
97
|
com4r |
⊢ ( 𝑦 ∈ ℝ → ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 → ( 𝐴 ⊆ ℝ → ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
99 |
|
xrltnr |
⊢ ( +∞ ∈ ℝ* → ¬ +∞ < +∞ ) |
100 |
67 99
|
ax-mp |
⊢ ¬ +∞ < +∞ |
101 |
|
breq1 |
⊢ ( 𝑦 = +∞ → ( 𝑦 < +∞ ↔ +∞ < +∞ ) ) |
102 |
100 101
|
mtbiri |
⊢ ( 𝑦 = +∞ → ¬ 𝑦 < +∞ ) |
103 |
102
|
pm2.21d |
⊢ ( 𝑦 = +∞ → ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
104 |
103
|
2a1d |
⊢ ( 𝑦 = +∞ → ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 → ( 𝐴 ⊆ ℝ → ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
105 |
|
0re |
⊢ 0 ∈ ℝ |
106 |
|
breq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝑧 ↔ 0 ≤ 𝑧 ) ) |
107 |
106
|
rexbidv |
⊢ ( 𝑥 = 0 → ( ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 0 ≤ 𝑧 ) ) |
108 |
107
|
rspcva |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 ) → ∃ 𝑧 ∈ 𝐴 0 ≤ 𝑧 ) |
109 |
105 108
|
mpan |
⊢ ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 → ∃ 𝑧 ∈ 𝐴 0 ≤ 𝑧 ) |
110 |
82 24
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑧 ∈ 𝐴 ) → -∞ < 𝑧 ) |
111 |
110
|
a1d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑧 ∈ 𝐴 ) → ( 0 ≤ 𝑧 → -∞ < 𝑧 ) ) |
112 |
111
|
reximdva |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑧 ∈ 𝐴 0 ≤ 𝑧 → ∃ 𝑧 ∈ 𝐴 -∞ < 𝑧 ) ) |
113 |
109 112
|
mpan9 |
⊢ ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 ∧ 𝐴 ⊆ ℝ ) → ∃ 𝑧 ∈ 𝐴 -∞ < 𝑧 ) |
114 |
113 36
|
syl5ibr |
⊢ ( 𝑦 = -∞ → ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 ∧ 𝐴 ⊆ ℝ ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
115 |
114
|
a1dd |
⊢ ( 𝑦 = -∞ → ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 ∧ 𝐴 ⊆ ℝ ) → ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
116 |
115
|
expd |
⊢ ( 𝑦 = -∞ → ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 → ( 𝐴 ⊆ ℝ → ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
117 |
98 104 116
|
3jaoi |
⊢ ( ( 𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞ ) → ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 → ( 𝐴 ⊆ ℝ → ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
118 |
12 117
|
sylbi |
⊢ ( 𝑦 ∈ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 → ( 𝐴 ⊆ ℝ → ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
119 |
118
|
com13 |
⊢ ( 𝐴 ⊆ ℝ → ( ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 → ( 𝑦 ∈ ℝ* → ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
120 |
119
|
imp |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 ) → ( 𝑦 ∈ ℝ* → ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
121 |
120
|
ralrimiv |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 ) → ∀ 𝑦 ∈ ℝ* ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
122 |
74 121
|
jca |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 ) → ( ∀ 𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
123 |
|
breq1 |
⊢ ( 𝑥 = +∞ → ( 𝑥 < 𝑦 ↔ +∞ < 𝑦 ) ) |
124 |
123
|
notbid |
⊢ ( 𝑥 = +∞ → ( ¬ 𝑥 < 𝑦 ↔ ¬ +∞ < 𝑦 ) ) |
125 |
124
|
ralbidv |
⊢ ( 𝑥 = +∞ → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ) ) |
126 |
|
breq2 |
⊢ ( 𝑥 = +∞ → ( 𝑦 < 𝑥 ↔ 𝑦 < +∞ ) ) |
127 |
126
|
imbi1d |
⊢ ( 𝑥 = +∞ → ( ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
128 |
127
|
ralbidv |
⊢ ( 𝑥 = +∞ → ( ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ∀ 𝑦 ∈ ℝ* ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
129 |
125 128
|
anbi12d |
⊢ ( 𝑥 = +∞ → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
130 |
129
|
rspcev |
⊢ ( ( +∞ ∈ ℝ* ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
131 |
67 122 130
|
sylancr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑥 ≤ 𝑧 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
132 |
66 131
|
syldan |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
133 |
132
|
adantlr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
134 |
50 133
|
pm2.61dan |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
135 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
136 |
|
ral0 |
⊢ ∀ 𝑦 ∈ ∅ ¬ -∞ < 𝑦 |
137 |
|
nltmnf |
⊢ ( 𝑦 ∈ ℝ* → ¬ 𝑦 < -∞ ) |
138 |
137
|
pm2.21d |
⊢ ( 𝑦 ∈ ℝ* → ( 𝑦 < -∞ → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) |
139 |
138
|
rgen |
⊢ ∀ 𝑦 ∈ ℝ* ( 𝑦 < -∞ → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) |
140 |
136 139
|
pm3.2i |
⊢ ( ∀ 𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < -∞ → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) |
141 |
|
breq1 |
⊢ ( 𝑥 = -∞ → ( 𝑥 < 𝑦 ↔ -∞ < 𝑦 ) ) |
142 |
141
|
notbid |
⊢ ( 𝑥 = -∞ → ( ¬ 𝑥 < 𝑦 ↔ ¬ -∞ < 𝑦 ) ) |
143 |
142
|
ralbidv |
⊢ ( 𝑥 = -∞ → ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ↔ ∀ 𝑦 ∈ ∅ ¬ -∞ < 𝑦 ) ) |
144 |
|
breq2 |
⊢ ( 𝑥 = -∞ → ( 𝑦 < 𝑥 ↔ 𝑦 < -∞ ) ) |
145 |
144
|
imbi1d |
⊢ ( 𝑥 = -∞ → ( ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ↔ ( 𝑦 < -∞ → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) ) |
146 |
145
|
ralbidv |
⊢ ( 𝑥 = -∞ → ( ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ↔ ∀ 𝑦 ∈ ℝ* ( 𝑦 < -∞ → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) ) |
147 |
143 146
|
anbi12d |
⊢ ( 𝑥 = -∞ → ( ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < -∞ → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) ) ) |
148 |
147
|
rspcev |
⊢ ( ( -∞ ∈ ℝ* ∧ ( ∀ 𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < -∞ → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) ) |
149 |
135 140 148
|
mp2an |
⊢ ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) |
150 |
149
|
a1i |
⊢ ( 𝐴 ⊆ ℝ → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) ) |
151 |
6 134 150
|
pm2.61ne |
⊢ ( 𝐴 ⊆ ℝ → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
152 |
151
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐴 ⊆ ℝ ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
153 |
|
ssel |
⊢ ( 𝐴 ⊆ ℝ* → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ* ) ) |
154 |
153 70
|
syl6 |
⊢ ( 𝐴 ⊆ ℝ* → ( 𝑦 ∈ 𝐴 → ¬ +∞ < 𝑦 ) ) |
155 |
154
|
ralrimiv |
⊢ ( 𝐴 ⊆ ℝ* → ∀ 𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ) |
156 |
|
breq2 |
⊢ ( 𝑧 = +∞ → ( 𝑦 < 𝑧 ↔ 𝑦 < +∞ ) ) |
157 |
156
|
rspcev |
⊢ ( ( +∞ ∈ 𝐴 ∧ 𝑦 < +∞ ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) |
158 |
157
|
ex |
⊢ ( +∞ ∈ 𝐴 → ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
159 |
158
|
ralrimivw |
⊢ ( +∞ ∈ 𝐴 → ∀ 𝑦 ∈ ℝ* ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
160 |
155 159
|
anim12i |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
161 |
67 160 130
|
sylancr |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
162 |
152 161
|
jaodan |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ ( 𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |