Metamath Proof Explorer


Theorem xrsupsslem

Description: Lemma for xrsupss . (Contributed by NM, 25-Oct-2005)

Ref Expression
Assertion xrsupsslem ( ( 𝐴 ⊆ ℝ* ∧ ( 𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 raleq ( 𝐴 = ∅ → ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀ 𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ) )
2 rexeq ( 𝐴 = ∅ → ( ∃ 𝑧𝐴 𝑦 < 𝑧 ↔ ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) )
3 2 imbi2d ( 𝐴 = ∅ → ( ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ↔ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) )
4 3 ralbidv ( 𝐴 = ∅ → ( ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ↔ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) )
5 1 4 anbi12d ( 𝐴 = ∅ → ( ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) ) )
6 5 rexbidv ( 𝐴 = ∅ → ( ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ↔ ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) ) )
7 sup3 ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
8 rexr ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* )
9 8 anim1i ( ( 𝑥 ∈ ℝ ∧ ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) → ( 𝑥 ∈ ℝ* ∧ ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) )
10 9 reximi2 ( ∃ 𝑥 ∈ ℝ ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
11 7 10 syl ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
12 elxr ( 𝑦 ∈ ℝ* ↔ ( 𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞ ) )
13 simpr ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) → ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
14 pnfnlt ( 𝑥 ∈ ℝ* → ¬ +∞ < 𝑥 )
15 14 adantr ( ( 𝑥 ∈ ℝ*𝑦 = +∞ ) → ¬ +∞ < 𝑥 )
16 breq1 ( 𝑦 = +∞ → ( 𝑦 < 𝑥 ↔ +∞ < 𝑥 ) )
17 16 notbid ( 𝑦 = +∞ → ( ¬ 𝑦 < 𝑥 ↔ ¬ +∞ < 𝑥 ) )
18 17 adantl ( ( 𝑥 ∈ ℝ*𝑦 = +∞ ) → ( ¬ 𝑦 < 𝑥 ↔ ¬ +∞ < 𝑥 ) )
19 15 18 mpbird ( ( 𝑥 ∈ ℝ*𝑦 = +∞ ) → ¬ 𝑦 < 𝑥 )
20 19 pm2.21d ( ( 𝑥 ∈ ℝ*𝑦 = +∞ ) → ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) )
21 20 ex ( 𝑥 ∈ ℝ* → ( 𝑦 = +∞ → ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
22 21 ad2antlr ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) → ( 𝑦 = +∞ → ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
23 ssel ( 𝐴 ⊆ ℝ → ( 𝑧𝐴𝑧 ∈ ℝ ) )
24 mnflt ( 𝑧 ∈ ℝ → -∞ < 𝑧 )
25 23 24 syl6 ( 𝐴 ⊆ ℝ → ( 𝑧𝐴 → -∞ < 𝑧 ) )
26 25 ancld ( 𝐴 ⊆ ℝ → ( 𝑧𝐴 → ( 𝑧𝐴 ∧ -∞ < 𝑧 ) ) )
27 26 eximdv ( 𝐴 ⊆ ℝ → ( ∃ 𝑧 𝑧𝐴 → ∃ 𝑧 ( 𝑧𝐴 ∧ -∞ < 𝑧 ) ) )
28 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧𝐴 )
29 df-rex ( ∃ 𝑧𝐴 -∞ < 𝑧 ↔ ∃ 𝑧 ( 𝑧𝐴 ∧ -∞ < 𝑧 ) )
30 27 28 29 3imtr4g ( 𝐴 ⊆ ℝ → ( 𝐴 ≠ ∅ → ∃ 𝑧𝐴 -∞ < 𝑧 ) )
31 30 imp ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ∃ 𝑧𝐴 -∞ < 𝑧 )
32 31 a1d ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( -∞ < 𝑥 → ∃ 𝑧𝐴 -∞ < 𝑧 ) )
33 32 ad2antrr ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ 𝑦 = -∞ ) → ( -∞ < 𝑥 → ∃ 𝑧𝐴 -∞ < 𝑧 ) )
34 breq1 ( 𝑦 = -∞ → ( 𝑦 < 𝑥 ↔ -∞ < 𝑥 ) )
35 breq1 ( 𝑦 = -∞ → ( 𝑦 < 𝑧 ↔ -∞ < 𝑧 ) )
36 35 rexbidv ( 𝑦 = -∞ → ( ∃ 𝑧𝐴 𝑦 < 𝑧 ↔ ∃ 𝑧𝐴 -∞ < 𝑧 ) )
37 34 36 imbi12d ( 𝑦 = -∞ → ( ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ↔ ( -∞ < 𝑥 → ∃ 𝑧𝐴 -∞ < 𝑧 ) ) )
38 37 adantl ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ 𝑦 = -∞ ) → ( ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ↔ ( -∞ < 𝑥 → ∃ 𝑧𝐴 -∞ < 𝑧 ) ) )
39 33 38 mpbird ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ 𝑦 = -∞ ) → ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) )
40 39 ex ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) → ( 𝑦 = -∞ → ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
41 40 adantr ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) → ( 𝑦 = -∞ → ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
42 13 22 41 3jaod ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) → ( ( 𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞ ) → ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
43 12 42 syl5bi ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) ∧ ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) → ( 𝑦 ∈ ℝ* → ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
44 43 ex ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) → ( ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) → ( 𝑦 ∈ ℝ* → ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) )
45 44 ralimdv2 ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) → ( ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) → ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
46 45 anim2d ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ ℝ* ) → ( ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) → ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) )
47 46 reximdva ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) )
48 47 3adant3 ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → ( ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) )
49 11 48 mpd ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
50 49 3expa ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
51 ralnex ( ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑦𝐴 𝑦𝑥 ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 )
52 rexnal ( ∃ 𝑦𝐴 ¬ 𝑦𝑥 ↔ ¬ ∀ 𝑦𝐴 𝑦𝑥 )
53 ssel2 ( ( 𝐴 ⊆ ℝ ∧ 𝑦𝐴 ) → 𝑦 ∈ ℝ )
54 letric ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑦𝑥𝑥𝑦 ) )
55 54 ord ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑦𝑥𝑥𝑦 ) )
56 53 55 sylan ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑦𝑥𝑥𝑦 ) )
57 56 an32s ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑦𝐴 ) → ( ¬ 𝑦𝑥𝑥𝑦 ) )
58 57 reximdva ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑦𝐴 ¬ 𝑦𝑥 → ∃ 𝑦𝐴 𝑥𝑦 ) )
59 52 58 syl5bir ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ¬ ∀ 𝑦𝐴 𝑦𝑥 → ∃ 𝑦𝐴 𝑥𝑦 ) )
60 59 ralimdva ( 𝐴 ⊆ ℝ → ( ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑦𝐴 𝑦𝑥 → ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑥𝑦 ) )
61 60 imp ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑦𝐴 𝑦𝑥 ) → ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑥𝑦 )
62 51 61 sylan2br ( ( 𝐴 ⊆ ℝ ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑥𝑦 )
63 breq2 ( 𝑦 = 𝑧 → ( 𝑥𝑦𝑥𝑧 ) )
64 63 cbvrexvw ( ∃ 𝑦𝐴 𝑥𝑦 ↔ ∃ 𝑧𝐴 𝑥𝑧 )
65 64 ralbii ( ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑥𝑦 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧 )
66 62 65 sylib ( ( 𝐴 ⊆ ℝ ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧 )
67 pnfxr +∞ ∈ ℝ*
68 ssel ( 𝐴 ⊆ ℝ → ( 𝑦𝐴𝑦 ∈ ℝ ) )
69 rexr ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* )
70 pnfnlt ( 𝑦 ∈ ℝ* → ¬ +∞ < 𝑦 )
71 69 70 syl ( 𝑦 ∈ ℝ → ¬ +∞ < 𝑦 )
72 68 71 syl6 ( 𝐴 ⊆ ℝ → ( 𝑦𝐴 → ¬ +∞ < 𝑦 ) )
73 72 ralrimiv ( 𝐴 ⊆ ℝ → ∀ 𝑦𝐴 ¬ +∞ < 𝑦 )
74 73 adantr ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧 ) → ∀ 𝑦𝐴 ¬ +∞ < 𝑦 )
75 peano2re ( 𝑦 ∈ ℝ → ( 𝑦 + 1 ) ∈ ℝ )
76 breq1 ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥𝑧 ↔ ( 𝑦 + 1 ) ≤ 𝑧 ) )
77 76 rexbidv ( 𝑥 = ( 𝑦 + 1 ) → ( ∃ 𝑧𝐴 𝑥𝑧 ↔ ∃ 𝑧𝐴 ( 𝑦 + 1 ) ≤ 𝑧 ) )
78 77 rspcva ( ( ( 𝑦 + 1 ) ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧 ) → ∃ 𝑧𝐴 ( 𝑦 + 1 ) ≤ 𝑧 )
79 78 adantrr ( ( ( 𝑦 + 1 ) ∈ ℝ ∧ ( ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ ) ) → ∃ 𝑧𝐴 ( 𝑦 + 1 ) ≤ 𝑧 )
80 79 ancoms ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ ) ∧ ( 𝑦 + 1 ) ∈ ℝ ) → ∃ 𝑧𝐴 ( 𝑦 + 1 ) ≤ 𝑧 )
81 75 80 sylan2 ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ ℝ ) → ∃ 𝑧𝐴 ( 𝑦 + 1 ) ≤ 𝑧 )
82 ssel2 ( ( 𝐴 ⊆ ℝ ∧ 𝑧𝐴 ) → 𝑧 ∈ ℝ )
83 ltp1 ( 𝑦 ∈ ℝ → 𝑦 < ( 𝑦 + 1 ) )
84 83 adantr ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → 𝑦 < ( 𝑦 + 1 ) )
85 75 ancli ( 𝑦 ∈ ℝ → ( 𝑦 ∈ ℝ ∧ ( 𝑦 + 1 ) ∈ ℝ ) )
86 ltletr ( ( 𝑦 ∈ ℝ ∧ ( 𝑦 + 1 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑦 < ( 𝑦 + 1 ) ∧ ( 𝑦 + 1 ) ≤ 𝑧 ) → 𝑦 < 𝑧 ) )
87 86 3expa ( ( ( 𝑦 ∈ ℝ ∧ ( 𝑦 + 1 ) ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑦 < ( 𝑦 + 1 ) ∧ ( 𝑦 + 1 ) ≤ 𝑧 ) → 𝑦 < 𝑧 ) )
88 85 87 sylan ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑦 < ( 𝑦 + 1 ) ∧ ( 𝑦 + 1 ) ≤ 𝑧 ) → 𝑦 < 𝑧 ) )
89 84 88 mpand ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑦 + 1 ) ≤ 𝑧𝑦 < 𝑧 ) )
90 89 ancoms ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 + 1 ) ≤ 𝑧𝑦 < 𝑧 ) )
91 82 90 sylan ( ( ( 𝐴 ⊆ ℝ ∧ 𝑧𝐴 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 + 1 ) ≤ 𝑧𝑦 < 𝑧 ) )
92 91 an32s ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧𝐴 ) → ( ( 𝑦 + 1 ) ≤ 𝑧𝑦 < 𝑧 ) )
93 92 reximdva ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑧𝐴 ( 𝑦 + 1 ) ≤ 𝑧 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) )
94 93 adantll ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑧𝐴 ( 𝑦 + 1 ) ≤ 𝑧 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) )
95 81 94 mpd ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ ℝ ) → ∃ 𝑧𝐴 𝑦 < 𝑧 )
96 95 exp31 ( ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧 → ( 𝐴 ⊆ ℝ → ( 𝑦 ∈ ℝ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
97 96 a1dd ( ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧 → ( 𝐴 ⊆ ℝ → ( 𝑦 < +∞ → ( 𝑦 ∈ ℝ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) )
98 97 com4r ( 𝑦 ∈ ℝ → ( ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧 → ( 𝐴 ⊆ ℝ → ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) )
99 xrltnr ( +∞ ∈ ℝ* → ¬ +∞ < +∞ )
100 67 99 ax-mp ¬ +∞ < +∞
101 breq1 ( 𝑦 = +∞ → ( 𝑦 < +∞ ↔ +∞ < +∞ ) )
102 100 101 mtbiri ( 𝑦 = +∞ → ¬ 𝑦 < +∞ )
103 102 pm2.21d ( 𝑦 = +∞ → ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) )
104 103 2a1d ( 𝑦 = +∞ → ( ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧 → ( 𝐴 ⊆ ℝ → ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) )
105 0re 0 ∈ ℝ
106 breq1 ( 𝑥 = 0 → ( 𝑥𝑧 ↔ 0 ≤ 𝑧 ) )
107 106 rexbidv ( 𝑥 = 0 → ( ∃ 𝑧𝐴 𝑥𝑧 ↔ ∃ 𝑧𝐴 0 ≤ 𝑧 ) )
108 107 rspcva ( ( 0 ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧 ) → ∃ 𝑧𝐴 0 ≤ 𝑧 )
109 105 108 mpan ( ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧 → ∃ 𝑧𝐴 0 ≤ 𝑧 )
110 82 24 syl ( ( 𝐴 ⊆ ℝ ∧ 𝑧𝐴 ) → -∞ < 𝑧 )
111 110 a1d ( ( 𝐴 ⊆ ℝ ∧ 𝑧𝐴 ) → ( 0 ≤ 𝑧 → -∞ < 𝑧 ) )
112 111 reximdva ( 𝐴 ⊆ ℝ → ( ∃ 𝑧𝐴 0 ≤ 𝑧 → ∃ 𝑧𝐴 -∞ < 𝑧 ) )
113 109 112 mpan9 ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ ) → ∃ 𝑧𝐴 -∞ < 𝑧 )
114 113 36 syl5ibr ( 𝑦 = -∞ → ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ ) → ∃ 𝑧𝐴 𝑦 < 𝑧 ) )
115 114 a1dd ( 𝑦 = -∞ → ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ ) → ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
116 115 expd ( 𝑦 = -∞ → ( ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧 → ( 𝐴 ⊆ ℝ → ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) )
117 98 104 116 3jaoi ( ( 𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞ ) → ( ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧 → ( 𝐴 ⊆ ℝ → ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) )
118 12 117 sylbi ( 𝑦 ∈ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧 → ( 𝐴 ⊆ ℝ → ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) )
119 118 com13 ( 𝐴 ⊆ ℝ → ( ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧 → ( 𝑦 ∈ ℝ* → ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) )
120 119 imp ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧 ) → ( 𝑦 ∈ ℝ* → ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
121 120 ralrimiv ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧 ) → ∀ 𝑦 ∈ ℝ* ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) )
122 74 121 jca ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧 ) → ( ∀ 𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
123 breq1 ( 𝑥 = +∞ → ( 𝑥 < 𝑦 ↔ +∞ < 𝑦 ) )
124 123 notbid ( 𝑥 = +∞ → ( ¬ 𝑥 < 𝑦 ↔ ¬ +∞ < 𝑦 ) )
125 124 ralbidv ( 𝑥 = +∞ → ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀ 𝑦𝐴 ¬ +∞ < 𝑦 ) )
126 breq2 ( 𝑥 = +∞ → ( 𝑦 < 𝑥𝑦 < +∞ ) )
127 126 imbi1d ( 𝑥 = +∞ → ( ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ↔ ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
128 127 ralbidv ( 𝑥 = +∞ → ( ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ↔ ∀ 𝑦 ∈ ℝ* ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
129 125 128 anbi12d ( 𝑥 = +∞ → ( ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ↔ ( ∀ 𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) )
130 129 rspcev ( ( +∞ ∈ ℝ* ∧ ( ∀ 𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
131 67 122 130 sylancr ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑧𝐴 𝑥𝑧 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
132 66 131 syldan ( ( 𝐴 ⊆ ℝ ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
133 132 adantlr ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
134 50 133 pm2.61dan ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
135 mnfxr -∞ ∈ ℝ*
136 ral0 𝑦 ∈ ∅ ¬ -∞ < 𝑦
137 nltmnf ( 𝑦 ∈ ℝ* → ¬ 𝑦 < -∞ )
138 137 pm2.21d ( 𝑦 ∈ ℝ* → ( 𝑦 < -∞ → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) )
139 138 rgen 𝑦 ∈ ℝ* ( 𝑦 < -∞ → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 )
140 136 139 pm3.2i ( ∀ 𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < -∞ → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) )
141 breq1 ( 𝑥 = -∞ → ( 𝑥 < 𝑦 ↔ -∞ < 𝑦 ) )
142 141 notbid ( 𝑥 = -∞ → ( ¬ 𝑥 < 𝑦 ↔ ¬ -∞ < 𝑦 ) )
143 142 ralbidv ( 𝑥 = -∞ → ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ↔ ∀ 𝑦 ∈ ∅ ¬ -∞ < 𝑦 ) )
144 breq2 ( 𝑥 = -∞ → ( 𝑦 < 𝑥𝑦 < -∞ ) )
145 144 imbi1d ( 𝑥 = -∞ → ( ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ↔ ( 𝑦 < -∞ → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) )
146 145 ralbidv ( 𝑥 = -∞ → ( ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ↔ ∀ 𝑦 ∈ ℝ* ( 𝑦 < -∞ → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) )
147 143 146 anbi12d ( 𝑥 = -∞ → ( ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < -∞ → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) ) )
148 147 rspcev ( ( -∞ ∈ ℝ* ∧ ( ∀ 𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < -∞ → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) )
149 135 140 148 mp2an 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) )
150 149 a1i ( 𝐴 ⊆ ℝ → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 < 𝑧 ) ) )
151 6 134 150 pm2.61ne ( 𝐴 ⊆ ℝ → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
152 151 adantl ( ( 𝐴 ⊆ ℝ*𝐴 ⊆ ℝ ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
153 ssel ( 𝐴 ⊆ ℝ* → ( 𝑦𝐴𝑦 ∈ ℝ* ) )
154 153 70 syl6 ( 𝐴 ⊆ ℝ* → ( 𝑦𝐴 → ¬ +∞ < 𝑦 ) )
155 154 ralrimiv ( 𝐴 ⊆ ℝ* → ∀ 𝑦𝐴 ¬ +∞ < 𝑦 )
156 breq2 ( 𝑧 = +∞ → ( 𝑦 < 𝑧𝑦 < +∞ ) )
157 156 rspcev ( ( +∞ ∈ 𝐴𝑦 < +∞ ) → ∃ 𝑧𝐴 𝑦 < 𝑧 )
158 157 ex ( +∞ ∈ 𝐴 → ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) )
159 158 ralrimivw ( +∞ ∈ 𝐴 → ∀ 𝑦 ∈ ℝ* ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) )
160 155 159 anim12i ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴 ) → ( ∀ 𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
161 67 160 130 sylancr ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
162 152 161 jaodan ( ( 𝐴 ⊆ ℝ* ∧ ( 𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ) ) → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )