Metamath Proof Explorer


Theorem xrtgcntopre

Description: The standard topologies on the extended reals and on the complex numbers, coincide when restricted to the reals. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Assertion xrtgcntopre ( ( ordTop ‘ ≤ ) ↾t ℝ ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ )

Proof

Step Hyp Ref Expression
1 eqid ( ( ordTop ‘ ≤ ) ↾t ℝ ) = ( ( ordTop ‘ ≤ ) ↾t ℝ )
2 1 xrtgioo ( topGen ‘ ran (,) ) = ( ( ordTop ‘ ≤ ) ↾t ℝ )
3 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
4 3 tgioo2 ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ )
5 2 4 eqtr3i ( ( ordTop ‘ ≤ ) ↾t ℝ ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ )