Step |
Hyp |
Ref |
Expression |
1 |
|
xrtgioo.1 |
⊢ 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ℝ ) |
2 |
|
letop |
⊢ ( ordTop ‘ ≤ ) ∈ Top |
3 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
4 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
5 |
3 4
|
ax-mp |
⊢ (,) Fn ( ℝ* × ℝ* ) |
6 |
|
iooordt |
⊢ ( 𝑥 (,) 𝑦 ) ∈ ( ordTop ‘ ≤ ) |
7 |
6
|
rgen2w |
⊢ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ( 𝑥 (,) 𝑦 ) ∈ ( ordTop ‘ ≤ ) |
8 |
|
ffnov |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ ( ordTop ‘ ≤ ) ↔ ( (,) Fn ( ℝ* × ℝ* ) ∧ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ( 𝑥 (,) 𝑦 ) ∈ ( ordTop ‘ ≤ ) ) ) |
9 |
5 7 8
|
mpbir2an |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ ( ordTop ‘ ≤ ) |
10 |
|
frn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ ( ordTop ‘ ≤ ) → ran (,) ⊆ ( ordTop ‘ ≤ ) ) |
11 |
9 10
|
ax-mp |
⊢ ran (,) ⊆ ( ordTop ‘ ≤ ) |
12 |
|
tgss |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ ran (,) ⊆ ( ordTop ‘ ≤ ) ) → ( topGen ‘ ran (,) ) ⊆ ( topGen ‘ ( ordTop ‘ ≤ ) ) ) |
13 |
2 11 12
|
mp2an |
⊢ ( topGen ‘ ran (,) ) ⊆ ( topGen ‘ ( ordTop ‘ ≤ ) ) |
14 |
|
tgtop |
⊢ ( ( ordTop ‘ ≤ ) ∈ Top → ( topGen ‘ ( ordTop ‘ ≤ ) ) = ( ordTop ‘ ≤ ) ) |
15 |
2 14
|
ax-mp |
⊢ ( topGen ‘ ( ordTop ‘ ≤ ) ) = ( ordTop ‘ ≤ ) |
16 |
13 15
|
sseqtri |
⊢ ( topGen ‘ ran (,) ) ⊆ ( ordTop ‘ ≤ ) |
17 |
16
|
sseli |
⊢ ( 𝑥 ∈ ( topGen ‘ ran (,) ) → 𝑥 ∈ ( ordTop ‘ ≤ ) ) |
18 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
19 |
|
toponss |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ∧ 𝑥 ∈ ( topGen ‘ ran (,) ) ) → 𝑥 ⊆ ℝ ) |
20 |
18 19
|
mpan |
⊢ ( 𝑥 ∈ ( topGen ‘ ran (,) ) → 𝑥 ⊆ ℝ ) |
21 |
|
reordt |
⊢ ℝ ∈ ( ordTop ‘ ≤ ) |
22 |
|
restopn2 |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ ℝ ∈ ( ordTop ‘ ≤ ) ) → ( 𝑥 ∈ ( ( ordTop ‘ ≤ ) ↾t ℝ ) ↔ ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑥 ⊆ ℝ ) ) ) |
23 |
2 21 22
|
mp2an |
⊢ ( 𝑥 ∈ ( ( ordTop ‘ ≤ ) ↾t ℝ ) ↔ ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑥 ⊆ ℝ ) ) |
24 |
17 20 23
|
sylanbrc |
⊢ ( 𝑥 ∈ ( topGen ‘ ran (,) ) → 𝑥 ∈ ( ( ordTop ‘ ≤ ) ↾t ℝ ) ) |
25 |
24
|
ssriv |
⊢ ( topGen ‘ ran (,) ) ⊆ ( ( ordTop ‘ ≤ ) ↾t ℝ ) |
26 |
|
eqid |
⊢ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) = ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) |
27 |
|
eqid |
⊢ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) = ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) |
28 |
|
eqid |
⊢ ran (,) = ran (,) |
29 |
26 27 28
|
leordtval |
⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) |
30 |
29
|
oveq1i |
⊢ ( ( ordTop ‘ ≤ ) ↾t ℝ ) = ( ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ↾t ℝ ) |
31 |
29 2
|
eqeltrri |
⊢ ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ∈ Top |
32 |
|
tgclb |
⊢ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases ↔ ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ∈ Top ) |
33 |
31 32
|
mpbir |
⊢ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases |
34 |
|
reex |
⊢ ℝ ∈ V |
35 |
|
tgrest |
⊢ ( ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases ∧ ℝ ∈ V ) → ( topGen ‘ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ) = ( ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ↾t ℝ ) ) |
36 |
33 34 35
|
mp2an |
⊢ ( topGen ‘ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ) = ( ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ↾t ℝ ) |
37 |
30 36
|
eqtr4i |
⊢ ( ( ordTop ‘ ≤ ) ↾t ℝ ) = ( topGen ‘ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ) |
38 |
|
retopbas |
⊢ ran (,) ∈ TopBases |
39 |
|
elrest |
⊢ ( ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases ∧ ℝ ∈ V ) → ( 𝑢 ∈ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ↔ ∃ 𝑣 ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) 𝑢 = ( 𝑣 ∩ ℝ ) ) ) |
40 |
33 34 39
|
mp2an |
⊢ ( 𝑢 ∈ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ↔ ∃ 𝑣 ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) 𝑢 = ( 𝑣 ∩ ℝ ) ) |
41 |
|
elun |
⊢ ( 𝑣 ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↔ ( 𝑣 ∈ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∨ 𝑣 ∈ ran (,) ) ) |
42 |
|
elun |
⊢ ( 𝑣 ∈ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ↔ ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∨ 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ) |
43 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) = ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) |
44 |
43
|
elrnmpt |
⊢ ( 𝑣 ∈ V → ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ↔ ∃ 𝑥 ∈ ℝ* 𝑣 = ( 𝑥 (,] +∞ ) ) ) |
45 |
44
|
elv |
⊢ ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ↔ ∃ 𝑥 ∈ ℝ* 𝑣 = ( 𝑥 (,] +∞ ) ) |
46 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → 𝑥 ∈ ℝ* ) |
47 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
48 |
47
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → +∞ ∈ ℝ* ) |
49 |
|
rexr |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* ) |
50 |
49
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ* ) |
51 |
|
df-ioc |
⊢ (,] = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑐 ∈ ℝ* ∣ ( 𝑎 < 𝑐 ∧ 𝑐 ≤ 𝑏 ) } ) |
52 |
51
|
elixx3g |
⊢ ( 𝑦 ∈ ( 𝑥 (,] +∞ ) ↔ ( ( 𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞ ) ) ) |
53 |
52
|
baib |
⊢ ( ( 𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 ∈ ( 𝑥 (,] +∞ ) ↔ ( 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞ ) ) ) |
54 |
46 48 50 53
|
syl3anc |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( 𝑥 (,] +∞ ) ↔ ( 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞ ) ) ) |
55 |
|
pnfge |
⊢ ( 𝑦 ∈ ℝ* → 𝑦 ≤ +∞ ) |
56 |
50 55
|
syl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → 𝑦 ≤ +∞ ) |
57 |
56
|
biantrud |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 ↔ ( 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞ ) ) ) |
58 |
|
ltpnf |
⊢ ( 𝑦 ∈ ℝ → 𝑦 < +∞ ) |
59 |
58
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → 𝑦 < +∞ ) |
60 |
59
|
biantrud |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 ↔ ( 𝑥 < 𝑦 ∧ 𝑦 < +∞ ) ) ) |
61 |
54 57 60
|
3bitr2d |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( 𝑥 (,] +∞ ) ↔ ( 𝑥 < 𝑦 ∧ 𝑦 < +∞ ) ) ) |
62 |
61
|
pm5.32da |
⊢ ( 𝑥 ∈ ℝ* → ( ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ ( 𝑥 (,] +∞ ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝑥 < 𝑦 ∧ 𝑦 < +∞ ) ) ) ) |
63 |
|
elin |
⊢ ( 𝑦 ∈ ( ( 𝑥 (,] +∞ ) ∩ ℝ ) ↔ ( 𝑦 ∈ ( 𝑥 (,] +∞ ) ∧ 𝑦 ∈ ℝ ) ) |
64 |
63
|
biancomi |
⊢ ( 𝑦 ∈ ( ( 𝑥 (,] +∞ ) ∩ ℝ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ ( 𝑥 (,] +∞ ) ) ) |
65 |
|
3anass |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ∧ 𝑦 < +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝑥 < 𝑦 ∧ 𝑦 < +∞ ) ) ) |
66 |
62 64 65
|
3bitr4g |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ ( ( 𝑥 (,] +∞ ) ∩ ℝ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ∧ 𝑦 < +∞ ) ) ) |
67 |
|
elioo2 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑦 ∈ ( 𝑥 (,) +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ∧ 𝑦 < +∞ ) ) ) |
68 |
47 67
|
mpan2 |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ ( 𝑥 (,) +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ∧ 𝑦 < +∞ ) ) ) |
69 |
66 68
|
bitr4d |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ ( ( 𝑥 (,] +∞ ) ∩ ℝ ) ↔ 𝑦 ∈ ( 𝑥 (,) +∞ ) ) ) |
70 |
69
|
eqrdv |
⊢ ( 𝑥 ∈ ℝ* → ( ( 𝑥 (,] +∞ ) ∩ ℝ ) = ( 𝑥 (,) +∞ ) ) |
71 |
|
ioorebas |
⊢ ( 𝑥 (,) +∞ ) ∈ ran (,) |
72 |
70 71
|
eqeltrdi |
⊢ ( 𝑥 ∈ ℝ* → ( ( 𝑥 (,] +∞ ) ∩ ℝ ) ∈ ran (,) ) |
73 |
|
ineq1 |
⊢ ( 𝑣 = ( 𝑥 (,] +∞ ) → ( 𝑣 ∩ ℝ ) = ( ( 𝑥 (,] +∞ ) ∩ ℝ ) ) |
74 |
73
|
eleq1d |
⊢ ( 𝑣 = ( 𝑥 (,] +∞ ) → ( ( 𝑣 ∩ ℝ ) ∈ ran (,) ↔ ( ( 𝑥 (,] +∞ ) ∩ ℝ ) ∈ ran (,) ) ) |
75 |
72 74
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑣 = ( 𝑥 (,] +∞ ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) ) |
76 |
75
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ℝ* 𝑣 = ( 𝑥 (,] +∞ ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) |
77 |
45 76
|
sylbi |
⊢ ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) |
78 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) = ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) |
79 |
78
|
elrnmpt |
⊢ ( 𝑣 ∈ V → ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ↔ ∃ 𝑥 ∈ ℝ* 𝑣 = ( -∞ [,) 𝑥 ) ) ) |
80 |
79
|
elv |
⊢ ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ↔ ∃ 𝑥 ∈ ℝ* 𝑣 = ( -∞ [,) 𝑥 ) ) |
81 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
82 |
81
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → -∞ ∈ ℝ* ) |
83 |
|
df-ico |
⊢ [,) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑐 ∈ ℝ* ∣ ( 𝑎 ≤ 𝑐 ∧ 𝑐 < 𝑏 ) } ) |
84 |
83
|
elixx3g |
⊢ ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ( ( -∞ ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
85 |
84
|
baib |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ( -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
86 |
82 46 50 85
|
syl3anc |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ( -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
87 |
|
mnfle |
⊢ ( 𝑦 ∈ ℝ* → -∞ ≤ 𝑦 ) |
88 |
50 87
|
syl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → -∞ ≤ 𝑦 ) |
89 |
88
|
biantrurd |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → ( 𝑦 < 𝑥 ↔ ( -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
90 |
|
mnflt |
⊢ ( 𝑦 ∈ ℝ → -∞ < 𝑦 ) |
91 |
90
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → -∞ < 𝑦 ) |
92 |
91
|
biantrurd |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → ( 𝑦 < 𝑥 ↔ ( -∞ < 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
93 |
86 89 92
|
3bitr2d |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ( -∞ < 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
94 |
93
|
pm5.32da |
⊢ ( 𝑥 ∈ ℝ* → ( ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ ( -∞ [,) 𝑥 ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( -∞ < 𝑦 ∧ 𝑦 < 𝑥 ) ) ) ) |
95 |
|
elin |
⊢ ( 𝑦 ∈ ( ( -∞ [,) 𝑥 ) ∩ ℝ ) ↔ ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ∧ 𝑦 ∈ ℝ ) ) |
96 |
95
|
biancomi |
⊢ ( 𝑦 ∈ ( ( -∞ [,) 𝑥 ) ∩ ℝ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ ( -∞ [,) 𝑥 ) ) ) |
97 |
|
3anass |
⊢ ( ( 𝑦 ∈ ℝ ∧ -∞ < 𝑦 ∧ 𝑦 < 𝑥 ) ↔ ( 𝑦 ∈ ℝ ∧ ( -∞ < 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
98 |
94 96 97
|
3bitr4g |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ ( ( -∞ [,) 𝑥 ) ∩ ℝ ) ↔ ( 𝑦 ∈ ℝ ∧ -∞ < 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
99 |
|
elioo2 |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑦 ∈ ( -∞ (,) 𝑥 ) ↔ ( 𝑦 ∈ ℝ ∧ -∞ < 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
100 |
81 99
|
mpan |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ ( -∞ (,) 𝑥 ) ↔ ( 𝑦 ∈ ℝ ∧ -∞ < 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
101 |
98 100
|
bitr4d |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ ( ( -∞ [,) 𝑥 ) ∩ ℝ ) ↔ 𝑦 ∈ ( -∞ (,) 𝑥 ) ) ) |
102 |
101
|
eqrdv |
⊢ ( 𝑥 ∈ ℝ* → ( ( -∞ [,) 𝑥 ) ∩ ℝ ) = ( -∞ (,) 𝑥 ) ) |
103 |
|
ioorebas |
⊢ ( -∞ (,) 𝑥 ) ∈ ran (,) |
104 |
102 103
|
eqeltrdi |
⊢ ( 𝑥 ∈ ℝ* → ( ( -∞ [,) 𝑥 ) ∩ ℝ ) ∈ ran (,) ) |
105 |
|
ineq1 |
⊢ ( 𝑣 = ( -∞ [,) 𝑥 ) → ( 𝑣 ∩ ℝ ) = ( ( -∞ [,) 𝑥 ) ∩ ℝ ) ) |
106 |
105
|
eleq1d |
⊢ ( 𝑣 = ( -∞ [,) 𝑥 ) → ( ( 𝑣 ∩ ℝ ) ∈ ran (,) ↔ ( ( -∞ [,) 𝑥 ) ∩ ℝ ) ∈ ran (,) ) ) |
107 |
104 106
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑣 = ( -∞ [,) 𝑥 ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) ) |
108 |
107
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ℝ* 𝑣 = ( -∞ [,) 𝑥 ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) |
109 |
80 108
|
sylbi |
⊢ ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) |
110 |
77 109
|
jaoi |
⊢ ( ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∨ 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) |
111 |
42 110
|
sylbi |
⊢ ( 𝑣 ∈ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) |
112 |
|
elssuni |
⊢ ( 𝑣 ∈ ran (,) → 𝑣 ⊆ ∪ ran (,) ) |
113 |
|
unirnioo |
⊢ ℝ = ∪ ran (,) |
114 |
112 113
|
sseqtrrdi |
⊢ ( 𝑣 ∈ ran (,) → 𝑣 ⊆ ℝ ) |
115 |
|
df-ss |
⊢ ( 𝑣 ⊆ ℝ ↔ ( 𝑣 ∩ ℝ ) = 𝑣 ) |
116 |
114 115
|
sylib |
⊢ ( 𝑣 ∈ ran (,) → ( 𝑣 ∩ ℝ ) = 𝑣 ) |
117 |
|
id |
⊢ ( 𝑣 ∈ ran (,) → 𝑣 ∈ ran (,) ) |
118 |
116 117
|
eqeltrd |
⊢ ( 𝑣 ∈ ran (,) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) |
119 |
111 118
|
jaoi |
⊢ ( ( 𝑣 ∈ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∨ 𝑣 ∈ ran (,) ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) |
120 |
41 119
|
sylbi |
⊢ ( 𝑣 ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) |
121 |
|
eleq1 |
⊢ ( 𝑢 = ( 𝑣 ∩ ℝ ) → ( 𝑢 ∈ ran (,) ↔ ( 𝑣 ∩ ℝ ) ∈ ran (,) ) ) |
122 |
120 121
|
syl5ibrcom |
⊢ ( 𝑣 ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) → ( 𝑢 = ( 𝑣 ∩ ℝ ) → 𝑢 ∈ ran (,) ) ) |
123 |
122
|
rexlimiv |
⊢ ( ∃ 𝑣 ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) 𝑢 = ( 𝑣 ∩ ℝ ) → 𝑢 ∈ ran (,) ) |
124 |
40 123
|
sylbi |
⊢ ( 𝑢 ∈ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) → 𝑢 ∈ ran (,) ) |
125 |
124
|
ssriv |
⊢ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ⊆ ran (,) |
126 |
|
tgss |
⊢ ( ( ran (,) ∈ TopBases ∧ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ⊆ ran (,) ) → ( topGen ‘ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ) ⊆ ( topGen ‘ ran (,) ) ) |
127 |
38 125 126
|
mp2an |
⊢ ( topGen ‘ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ) ⊆ ( topGen ‘ ran (,) ) |
128 |
37 127
|
eqsstri |
⊢ ( ( ordTop ‘ ≤ ) ↾t ℝ ) ⊆ ( topGen ‘ ran (,) ) |
129 |
25 128
|
eqssi |
⊢ ( topGen ‘ ran (,) ) = ( ( ordTop ‘ ≤ ) ↾t ℝ ) |
130 |
129 1
|
eqtr4i |
⊢ ( topGen ‘ ran (,) ) = 𝐽 |