Metamath Proof Explorer


Theorem xrtgioo

Description: The topology on the extended reals coincides with the standard topology on the reals, when restricted to RR . (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis xrtgioo.1 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ℝ )
Assertion xrtgioo ( topGen ‘ ran (,) ) = 𝐽

Proof

Step Hyp Ref Expression
1 xrtgioo.1 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ℝ )
2 letop ( ordTop ‘ ≤ ) ∈ Top
3 ioof (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ
4 ffn ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) )
5 3 4 ax-mp (,) Fn ( ℝ* × ℝ* )
6 iooordt ( 𝑥 (,) 𝑦 ) ∈ ( ordTop ‘ ≤ )
7 6 rgen2w 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ( 𝑥 (,) 𝑦 ) ∈ ( ordTop ‘ ≤ )
8 ffnov ( (,) : ( ℝ* × ℝ* ) ⟶ ( ordTop ‘ ≤ ) ↔ ( (,) Fn ( ℝ* × ℝ* ) ∧ ∀ 𝑥 ∈ ℝ*𝑦 ∈ ℝ* ( 𝑥 (,) 𝑦 ) ∈ ( ordTop ‘ ≤ ) ) )
9 5 7 8 mpbir2an (,) : ( ℝ* × ℝ* ) ⟶ ( ordTop ‘ ≤ )
10 frn ( (,) : ( ℝ* × ℝ* ) ⟶ ( ordTop ‘ ≤ ) → ran (,) ⊆ ( ordTop ‘ ≤ ) )
11 9 10 ax-mp ran (,) ⊆ ( ordTop ‘ ≤ )
12 tgss ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ ran (,) ⊆ ( ordTop ‘ ≤ ) ) → ( topGen ‘ ran (,) ) ⊆ ( topGen ‘ ( ordTop ‘ ≤ ) ) )
13 2 11 12 mp2an ( topGen ‘ ran (,) ) ⊆ ( topGen ‘ ( ordTop ‘ ≤ ) )
14 tgtop ( ( ordTop ‘ ≤ ) ∈ Top → ( topGen ‘ ( ordTop ‘ ≤ ) ) = ( ordTop ‘ ≤ ) )
15 2 14 ax-mp ( topGen ‘ ( ordTop ‘ ≤ ) ) = ( ordTop ‘ ≤ )
16 13 15 sseqtri ( topGen ‘ ran (,) ) ⊆ ( ordTop ‘ ≤ )
17 16 sseli ( 𝑥 ∈ ( topGen ‘ ran (,) ) → 𝑥 ∈ ( ordTop ‘ ≤ ) )
18 retopon ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ )
19 toponss ( ( ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ∧ 𝑥 ∈ ( topGen ‘ ran (,) ) ) → 𝑥 ⊆ ℝ )
20 18 19 mpan ( 𝑥 ∈ ( topGen ‘ ran (,) ) → 𝑥 ⊆ ℝ )
21 reordt ℝ ∈ ( ordTop ‘ ≤ )
22 restopn2 ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ ℝ ∈ ( ordTop ‘ ≤ ) ) → ( 𝑥 ∈ ( ( ordTop ‘ ≤ ) ↾t ℝ ) ↔ ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑥 ⊆ ℝ ) ) )
23 2 21 22 mp2an ( 𝑥 ∈ ( ( ordTop ‘ ≤ ) ↾t ℝ ) ↔ ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑥 ⊆ ℝ ) )
24 17 20 23 sylanbrc ( 𝑥 ∈ ( topGen ‘ ran (,) ) → 𝑥 ∈ ( ( ordTop ‘ ≤ ) ↾t ℝ ) )
25 24 ssriv ( topGen ‘ ran (,) ) ⊆ ( ( ordTop ‘ ≤ ) ↾t ℝ )
26 eqid ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) = ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) )
27 eqid ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) = ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) )
28 eqid ran (,) = ran (,)
29 26 27 28 leordtval ( ordTop ‘ ≤ ) = ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) )
30 29 oveq1i ( ( ordTop ‘ ≤ ) ↾t ℝ ) = ( ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ↾t ℝ )
31 29 2 eqeltrri ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ∈ Top
32 tgclb ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases ↔ ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ∈ Top )
33 31 32 mpbir ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases
34 reex ℝ ∈ V
35 tgrest ( ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases ∧ ℝ ∈ V ) → ( topGen ‘ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ) = ( ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ↾t ℝ ) )
36 33 34 35 mp2an ( topGen ‘ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ) = ( ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ↾t ℝ )
37 30 36 eqtr4i ( ( ordTop ‘ ≤ ) ↾t ℝ ) = ( topGen ‘ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) )
38 retopbas ran (,) ∈ TopBases
39 elrest ( ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases ∧ ℝ ∈ V ) → ( 𝑢 ∈ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ↔ ∃ 𝑣 ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) 𝑢 = ( 𝑣 ∩ ℝ ) ) )
40 33 34 39 mp2an ( 𝑢 ∈ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ↔ ∃ 𝑣 ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) 𝑢 = ( 𝑣 ∩ ℝ ) )
41 elun ( 𝑣 ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↔ ( 𝑣 ∈ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∨ 𝑣 ∈ ran (,) ) )
42 elun ( 𝑣 ∈ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ↔ ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∨ 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) )
43 eqid ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) = ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) )
44 43 elrnmpt ( 𝑣 ∈ V → ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ↔ ∃ 𝑥 ∈ ℝ* 𝑣 = ( 𝑥 (,] +∞ ) ) )
45 44 elv ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ↔ ∃ 𝑥 ∈ ℝ* 𝑣 = ( 𝑥 (,] +∞ ) )
46 simpl ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ ) → 𝑥 ∈ ℝ* )
47 pnfxr +∞ ∈ ℝ*
48 47 a1i ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ ) → +∞ ∈ ℝ* )
49 rexr ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* )
50 49 adantl ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ* )
51 df-ioc (,] = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑐 ∈ ℝ* ∣ ( 𝑎 < 𝑐𝑐𝑏 ) } )
52 51 elixx3g ( 𝑦 ∈ ( 𝑥 (,] +∞ ) ↔ ( ( 𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ* ) ∧ ( 𝑥 < 𝑦𝑦 ≤ +∞ ) ) )
53 52 baib ( ( 𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑦 ∈ ( 𝑥 (,] +∞ ) ↔ ( 𝑥 < 𝑦𝑦 ≤ +∞ ) ) )
54 46 48 50 53 syl3anc ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( 𝑥 (,] +∞ ) ↔ ( 𝑥 < 𝑦𝑦 ≤ +∞ ) ) )
55 pnfge ( 𝑦 ∈ ℝ*𝑦 ≤ +∞ )
56 50 55 syl ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ ) → 𝑦 ≤ +∞ )
57 56 biantrud ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 ↔ ( 𝑥 < 𝑦𝑦 ≤ +∞ ) ) )
58 ltpnf ( 𝑦 ∈ ℝ → 𝑦 < +∞ )
59 58 adantl ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ ) → 𝑦 < +∞ )
60 59 biantrud ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 ↔ ( 𝑥 < 𝑦𝑦 < +∞ ) ) )
61 54 57 60 3bitr2d ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( 𝑥 (,] +∞ ) ↔ ( 𝑥 < 𝑦𝑦 < +∞ ) ) )
62 61 pm5.32da ( 𝑥 ∈ ℝ* → ( ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ ( 𝑥 (,] +∞ ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝑥 < 𝑦𝑦 < +∞ ) ) ) )
63 elin ( 𝑦 ∈ ( ( 𝑥 (,] +∞ ) ∩ ℝ ) ↔ ( 𝑦 ∈ ( 𝑥 (,] +∞ ) ∧ 𝑦 ∈ ℝ ) )
64 63 biancomi ( 𝑦 ∈ ( ( 𝑥 (,] +∞ ) ∩ ℝ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ ( 𝑥 (,] +∞ ) ) )
65 3anass ( ( 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦𝑦 < +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝑥 < 𝑦𝑦 < +∞ ) ) )
66 62 64 65 3bitr4g ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ ( ( 𝑥 (,] +∞ ) ∩ ℝ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦𝑦 < +∞ ) ) )
67 elioo2 ( ( 𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑦 ∈ ( 𝑥 (,) +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦𝑦 < +∞ ) ) )
68 47 67 mpan2 ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ ( 𝑥 (,) +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦𝑦 < +∞ ) ) )
69 66 68 bitr4d ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ ( ( 𝑥 (,] +∞ ) ∩ ℝ ) ↔ 𝑦 ∈ ( 𝑥 (,) +∞ ) ) )
70 69 eqrdv ( 𝑥 ∈ ℝ* → ( ( 𝑥 (,] +∞ ) ∩ ℝ ) = ( 𝑥 (,) +∞ ) )
71 ioorebas ( 𝑥 (,) +∞ ) ∈ ran (,)
72 70 71 eqeltrdi ( 𝑥 ∈ ℝ* → ( ( 𝑥 (,] +∞ ) ∩ ℝ ) ∈ ran (,) )
73 ineq1 ( 𝑣 = ( 𝑥 (,] +∞ ) → ( 𝑣 ∩ ℝ ) = ( ( 𝑥 (,] +∞ ) ∩ ℝ ) )
74 73 eleq1d ( 𝑣 = ( 𝑥 (,] +∞ ) → ( ( 𝑣 ∩ ℝ ) ∈ ran (,) ↔ ( ( 𝑥 (,] +∞ ) ∩ ℝ ) ∈ ran (,) ) )
75 72 74 syl5ibrcom ( 𝑥 ∈ ℝ* → ( 𝑣 = ( 𝑥 (,] +∞ ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) )
76 75 rexlimiv ( ∃ 𝑥 ∈ ℝ* 𝑣 = ( 𝑥 (,] +∞ ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) )
77 45 76 sylbi ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) )
78 eqid ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) = ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) )
79 78 elrnmpt ( 𝑣 ∈ V → ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ↔ ∃ 𝑥 ∈ ℝ* 𝑣 = ( -∞ [,) 𝑥 ) ) )
80 79 elv ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ↔ ∃ 𝑥 ∈ ℝ* 𝑣 = ( -∞ [,) 𝑥 ) )
81 mnfxr -∞ ∈ ℝ*
82 81 a1i ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ ) → -∞ ∈ ℝ* )
83 df-ico [,) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑐 ∈ ℝ* ∣ ( 𝑎𝑐𝑐 < 𝑏 ) } )
84 83 elixx3g ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ( ( -∞ ∈ ℝ*𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) ∧ ( -∞ ≤ 𝑦𝑦 < 𝑥 ) ) )
85 84 baib ( ( -∞ ∈ ℝ*𝑥 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ( -∞ ≤ 𝑦𝑦 < 𝑥 ) ) )
86 82 46 50 85 syl3anc ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ( -∞ ≤ 𝑦𝑦 < 𝑥 ) ) )
87 mnfle ( 𝑦 ∈ ℝ* → -∞ ≤ 𝑦 )
88 50 87 syl ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ ) → -∞ ≤ 𝑦 )
89 88 biantrurd ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ ) → ( 𝑦 < 𝑥 ↔ ( -∞ ≤ 𝑦𝑦 < 𝑥 ) ) )
90 mnflt ( 𝑦 ∈ ℝ → -∞ < 𝑦 )
91 90 adantl ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ ) → -∞ < 𝑦 )
92 91 biantrurd ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ ) → ( 𝑦 < 𝑥 ↔ ( -∞ < 𝑦𝑦 < 𝑥 ) ) )
93 86 89 92 3bitr2d ( ( 𝑥 ∈ ℝ*𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ( -∞ < 𝑦𝑦 < 𝑥 ) ) )
94 93 pm5.32da ( 𝑥 ∈ ℝ* → ( ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ ( -∞ [,) 𝑥 ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( -∞ < 𝑦𝑦 < 𝑥 ) ) ) )
95 elin ( 𝑦 ∈ ( ( -∞ [,) 𝑥 ) ∩ ℝ ) ↔ ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ∧ 𝑦 ∈ ℝ ) )
96 95 biancomi ( 𝑦 ∈ ( ( -∞ [,) 𝑥 ) ∩ ℝ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ ( -∞ [,) 𝑥 ) ) )
97 3anass ( ( 𝑦 ∈ ℝ ∧ -∞ < 𝑦𝑦 < 𝑥 ) ↔ ( 𝑦 ∈ ℝ ∧ ( -∞ < 𝑦𝑦 < 𝑥 ) ) )
98 94 96 97 3bitr4g ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ ( ( -∞ [,) 𝑥 ) ∩ ℝ ) ↔ ( 𝑦 ∈ ℝ ∧ -∞ < 𝑦𝑦 < 𝑥 ) ) )
99 elioo2 ( ( -∞ ∈ ℝ*𝑥 ∈ ℝ* ) → ( 𝑦 ∈ ( -∞ (,) 𝑥 ) ↔ ( 𝑦 ∈ ℝ ∧ -∞ < 𝑦𝑦 < 𝑥 ) ) )
100 81 99 mpan ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ ( -∞ (,) 𝑥 ) ↔ ( 𝑦 ∈ ℝ ∧ -∞ < 𝑦𝑦 < 𝑥 ) ) )
101 98 100 bitr4d ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ ( ( -∞ [,) 𝑥 ) ∩ ℝ ) ↔ 𝑦 ∈ ( -∞ (,) 𝑥 ) ) )
102 101 eqrdv ( 𝑥 ∈ ℝ* → ( ( -∞ [,) 𝑥 ) ∩ ℝ ) = ( -∞ (,) 𝑥 ) )
103 ioorebas ( -∞ (,) 𝑥 ) ∈ ran (,)
104 102 103 eqeltrdi ( 𝑥 ∈ ℝ* → ( ( -∞ [,) 𝑥 ) ∩ ℝ ) ∈ ran (,) )
105 ineq1 ( 𝑣 = ( -∞ [,) 𝑥 ) → ( 𝑣 ∩ ℝ ) = ( ( -∞ [,) 𝑥 ) ∩ ℝ ) )
106 105 eleq1d ( 𝑣 = ( -∞ [,) 𝑥 ) → ( ( 𝑣 ∩ ℝ ) ∈ ran (,) ↔ ( ( -∞ [,) 𝑥 ) ∩ ℝ ) ∈ ran (,) ) )
107 104 106 syl5ibrcom ( 𝑥 ∈ ℝ* → ( 𝑣 = ( -∞ [,) 𝑥 ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) )
108 107 rexlimiv ( ∃ 𝑥 ∈ ℝ* 𝑣 = ( -∞ [,) 𝑥 ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) )
109 80 108 sylbi ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) )
110 77 109 jaoi ( ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∨ 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) )
111 42 110 sylbi ( 𝑣 ∈ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) )
112 elssuni ( 𝑣 ∈ ran (,) → 𝑣 ran (,) )
113 unirnioo ℝ = ran (,)
114 112 113 sseqtrrdi ( 𝑣 ∈ ran (,) → 𝑣 ⊆ ℝ )
115 df-ss ( 𝑣 ⊆ ℝ ↔ ( 𝑣 ∩ ℝ ) = 𝑣 )
116 114 115 sylib ( 𝑣 ∈ ran (,) → ( 𝑣 ∩ ℝ ) = 𝑣 )
117 id ( 𝑣 ∈ ran (,) → 𝑣 ∈ ran (,) )
118 116 117 eqeltrd ( 𝑣 ∈ ran (,) → ( 𝑣 ∩ ℝ ) ∈ ran (,) )
119 111 118 jaoi ( ( 𝑣 ∈ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∨ 𝑣 ∈ ran (,) ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) )
120 41 119 sylbi ( 𝑣 ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) )
121 eleq1 ( 𝑢 = ( 𝑣 ∩ ℝ ) → ( 𝑢 ∈ ran (,) ↔ ( 𝑣 ∩ ℝ ) ∈ ran (,) ) )
122 120 121 syl5ibrcom ( 𝑣 ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) → ( 𝑢 = ( 𝑣 ∩ ℝ ) → 𝑢 ∈ ran (,) ) )
123 122 rexlimiv ( ∃ 𝑣 ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) 𝑢 = ( 𝑣 ∩ ℝ ) → 𝑢 ∈ ran (,) )
124 40 123 sylbi ( 𝑢 ∈ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) → 𝑢 ∈ ran (,) )
125 124 ssriv ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ⊆ ran (,)
126 tgss ( ( ran (,) ∈ TopBases ∧ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ⊆ ran (,) ) → ( topGen ‘ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ) ⊆ ( topGen ‘ ran (,) ) )
127 38 125 126 mp2an ( topGen ‘ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ) ⊆ ( topGen ‘ ran (,) )
128 37 127 eqsstri ( ( ordTop ‘ ≤ ) ↾t ℝ ) ⊆ ( topGen ‘ ran (,) )
129 25 128 eqssi ( topGen ‘ ran (,) ) = ( ( ordTop ‘ ≤ ) ↾t ℝ )
130 129 1 eqtr4i ( topGen ‘ ran (,) ) = 𝐽