Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 < 𝐵 ↔ 𝑧 < 𝐵 ) ) |
2 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 < 𝑦 ↔ 𝑧 < 𝑦 ) ) |
3 |
2
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) |
4 |
1 3
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ↔ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
5 |
4
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ↔ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) |
6 |
|
elxr |
⊢ ( 𝑥 ∈ ℝ* ↔ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) |
7 |
|
pm2.27 |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
8 |
7
|
a1i |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( 𝑥 ∈ ℝ → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
9 |
|
pnfnlt |
⊢ ( 𝐵 ∈ ℝ* → ¬ +∞ < 𝐵 ) |
10 |
|
breq1 |
⊢ ( 𝑥 = +∞ → ( 𝑥 < 𝐵 ↔ +∞ < 𝐵 ) ) |
11 |
10
|
notbid |
⊢ ( 𝑥 = +∞ → ( ¬ 𝑥 < 𝐵 ↔ ¬ +∞ < 𝐵 ) ) |
12 |
9 11
|
syl5ibr |
⊢ ( 𝑥 = +∞ → ( 𝐵 ∈ ℝ* → ¬ 𝑥 < 𝐵 ) ) |
13 |
|
pm2.21 |
⊢ ( ¬ 𝑥 < 𝐵 → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) |
14 |
12 13
|
syl6com |
⊢ ( 𝐵 ∈ ℝ* → ( 𝑥 = +∞ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
15 |
14
|
ad2antlr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( 𝑥 = +∞ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
16 |
15
|
a1dd |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( 𝑥 = +∞ → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
17 |
|
elxr |
⊢ ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
18 |
|
peano2rem |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 − 1 ) ∈ ℝ ) |
19 |
|
breq1 |
⊢ ( 𝑧 = ( 𝐵 − 1 ) → ( 𝑧 < 𝐵 ↔ ( 𝐵 − 1 ) < 𝐵 ) ) |
20 |
|
breq1 |
⊢ ( 𝑧 = ( 𝐵 − 1 ) → ( 𝑧 < 𝑦 ↔ ( 𝐵 − 1 ) < 𝑦 ) ) |
21 |
20
|
rexbidv |
⊢ ( 𝑧 = ( 𝐵 − 1 ) → ( ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) |
22 |
19 21
|
imbi12d |
⊢ ( 𝑧 = ( 𝐵 − 1 ) → ( ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ↔ ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) ) |
23 |
22
|
rspcv |
⊢ ( ( 𝐵 − 1 ) ∈ ℝ → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) ) |
24 |
18 23
|
syl |
⊢ ( 𝐵 ∈ ℝ → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) ) |
26 |
|
ltm1 |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 − 1 ) < 𝐵 ) |
27 |
|
id |
⊢ ( ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) → ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) |
28 |
26 27
|
syl5com |
⊢ ( 𝐵 ∈ ℝ → ( ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) |
29 |
28
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) |
30 |
18
|
ad2antlr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐵 − 1 ) ∈ ℝ ) |
31 |
|
mnflt |
⊢ ( ( 𝐵 − 1 ) ∈ ℝ → -∞ < ( 𝐵 − 1 ) ) |
32 |
30 31
|
syl |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → -∞ < ( 𝐵 − 1 ) ) |
33 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
34 |
30
|
rexrd |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐵 − 1 ) ∈ ℝ* ) |
35 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
36 |
35
|
adantlr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
37 |
|
xrlttr |
⊢ ( ( -∞ ∈ ℝ* ∧ ( 𝐵 − 1 ) ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( ( -∞ < ( 𝐵 − 1 ) ∧ ( 𝐵 − 1 ) < 𝑦 ) → -∞ < 𝑦 ) ) |
38 |
33 34 36 37
|
mp3an2i |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ( -∞ < ( 𝐵 − 1 ) ∧ ( 𝐵 − 1 ) < 𝑦 ) → -∞ < 𝑦 ) ) |
39 |
32 38
|
mpand |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐵 − 1 ) < 𝑦 → -∞ < 𝑦 ) ) |
40 |
39
|
reximdva |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
41 |
25 29 40
|
3syld |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
42 |
41
|
a1dd |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) ) |
43 |
|
1re |
⊢ 1 ∈ ℝ |
44 |
|
breq1 |
⊢ ( 𝑧 = 1 → ( 𝑧 < 𝐵 ↔ 1 < 𝐵 ) ) |
45 |
|
breq1 |
⊢ ( 𝑧 = 1 → ( 𝑧 < 𝑦 ↔ 1 < 𝑦 ) ) |
46 |
45
|
rexbidv |
⊢ ( 𝑧 = 1 → ( ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) ) |
47 |
44 46
|
imbi12d |
⊢ ( 𝑧 = 1 → ( ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ↔ ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) ) ) |
48 |
47
|
rspcv |
⊢ ( 1 ∈ ℝ → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) ) ) |
49 |
43 48
|
ax-mp |
⊢ ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) ) |
50 |
|
ltpnf |
⊢ ( 1 ∈ ℝ → 1 < +∞ ) |
51 |
43 50
|
ax-mp |
⊢ 1 < +∞ |
52 |
|
breq2 |
⊢ ( 𝐵 = +∞ → ( 1 < 𝐵 ↔ 1 < +∞ ) ) |
53 |
51 52
|
mpbiri |
⊢ ( 𝐵 = +∞ → 1 < 𝐵 ) |
54 |
|
id |
⊢ ( ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) → ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) ) |
55 |
53 54
|
syl5com |
⊢ ( 𝐵 = +∞ → ( ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) ) |
56 |
|
mnflt |
⊢ ( 1 ∈ ℝ → -∞ < 1 ) |
57 |
43 56
|
ax-mp |
⊢ -∞ < 1 |
58 |
|
rexr |
⊢ ( 1 ∈ ℝ → 1 ∈ ℝ* ) |
59 |
43 58
|
ax-mp |
⊢ 1 ∈ ℝ* |
60 |
|
xrlttr |
⊢ ( ( -∞ ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( ( -∞ < 1 ∧ 1 < 𝑦 ) → -∞ < 𝑦 ) ) |
61 |
33 59 60
|
mp3an12 |
⊢ ( 𝑦 ∈ ℝ* → ( ( -∞ < 1 ∧ 1 < 𝑦 ) → -∞ < 𝑦 ) ) |
62 |
57 61
|
mpani |
⊢ ( 𝑦 ∈ ℝ* → ( 1 < 𝑦 → -∞ < 𝑦 ) ) |
63 |
35 62
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴 ) → ( 1 < 𝑦 → -∞ < 𝑦 ) ) |
64 |
63
|
reximdva |
⊢ ( 𝐴 ⊆ ℝ* → ( ∃ 𝑦 ∈ 𝐴 1 < 𝑦 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
65 |
55 64
|
sylan9r |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 = +∞ ) → ( ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
66 |
49 65
|
syl5 |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 = +∞ ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
67 |
66
|
a1dd |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 = +∞ ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) ) |
68 |
|
xrltnr |
⊢ ( -∞ ∈ ℝ* → ¬ -∞ < -∞ ) |
69 |
33 68
|
ax-mp |
⊢ ¬ -∞ < -∞ |
70 |
|
breq2 |
⊢ ( 𝐵 = -∞ → ( -∞ < 𝐵 ↔ -∞ < -∞ ) ) |
71 |
69 70
|
mtbiri |
⊢ ( 𝐵 = -∞ → ¬ -∞ < 𝐵 ) |
72 |
71
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 = -∞ ) → ¬ -∞ < 𝐵 ) |
73 |
72
|
pm2.21d |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 = -∞ ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
74 |
73
|
a1d |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 = -∞ ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) ) |
75 |
42 67 74
|
3jaodan |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) ) |
76 |
17 75
|
sylan2b |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) ) |
77 |
76
|
imp |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
78 |
|
breq1 |
⊢ ( 𝑥 = -∞ → ( 𝑥 < 𝐵 ↔ -∞ < 𝐵 ) ) |
79 |
|
breq1 |
⊢ ( 𝑥 = -∞ → ( 𝑥 < 𝑦 ↔ -∞ < 𝑦 ) ) |
80 |
79
|
rexbidv |
⊢ ( 𝑥 = -∞ → ( ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
81 |
78 80
|
imbi12d |
⊢ ( 𝑥 = -∞ → ( ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ↔ ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) ) |
82 |
77 81
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( 𝑥 = -∞ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
83 |
82
|
a1dd |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( 𝑥 = -∞ → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
84 |
8 16 83
|
3jaod |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
85 |
6 84
|
syl5bi |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( 𝑥 ∈ ℝ* → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
86 |
85
|
com23 |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 ∈ ℝ* → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
87 |
86
|
ralimdv2 |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) → ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
88 |
87
|
ex |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) → ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
89 |
5 88
|
syl5bi |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) → ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
90 |
89
|
pm2.43d |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) → ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
91 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
92 |
91
|
imim1i |
⊢ ( ( 𝑥 ∈ ℝ* → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
93 |
92
|
ralimi2 |
⊢ ( ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) → ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) |
94 |
90 93
|
impbid1 |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ↔ ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |