Metamath Proof Explorer


Theorem zabscl

Description: The absolute value of an integer is an integer. (Contributed by Stefan O'Rear, 24-Sep-2014)

Ref Expression
Assertion zabscl ( 𝐴 ∈ ℤ → ( abs ‘ 𝐴 ) ∈ ℤ )

Proof

Step Hyp Ref Expression
1 nn0abscl ( 𝐴 ∈ ℤ → ( abs ‘ 𝐴 ) ∈ ℕ0 )
2 1 nn0zd ( 𝐴 ∈ ℤ → ( abs ‘ 𝐴 ) ∈ ℤ )