Step |
Hyp |
Ref |
Expression |
1 |
|
eltpi |
⊢ ( 𝑍 ∈ { - 1 , 0 , 1 } → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) |
2 |
|
fveq2 |
⊢ ( 𝑍 = - 1 → ( abs ‘ 𝑍 ) = ( abs ‘ - 1 ) ) |
3 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
4 |
3
|
absnegi |
⊢ ( abs ‘ - 1 ) = ( abs ‘ 1 ) |
5 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
6 |
4 5
|
eqtri |
⊢ ( abs ‘ - 1 ) = 1 |
7 |
|
1le1 |
⊢ 1 ≤ 1 |
8 |
6 7
|
eqbrtri |
⊢ ( abs ‘ - 1 ) ≤ 1 |
9 |
2 8
|
eqbrtrdi |
⊢ ( 𝑍 = - 1 → ( abs ‘ 𝑍 ) ≤ 1 ) |
10 |
|
fveq2 |
⊢ ( 𝑍 = 0 → ( abs ‘ 𝑍 ) = ( abs ‘ 0 ) ) |
11 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
12 |
|
0le1 |
⊢ 0 ≤ 1 |
13 |
11 12
|
eqbrtri |
⊢ ( abs ‘ 0 ) ≤ 1 |
14 |
10 13
|
eqbrtrdi |
⊢ ( 𝑍 = 0 → ( abs ‘ 𝑍 ) ≤ 1 ) |
15 |
|
fveq2 |
⊢ ( 𝑍 = 1 → ( abs ‘ 𝑍 ) = ( abs ‘ 1 ) ) |
16 |
5 7
|
eqbrtri |
⊢ ( abs ‘ 1 ) ≤ 1 |
17 |
15 16
|
eqbrtrdi |
⊢ ( 𝑍 = 1 → ( abs ‘ 𝑍 ) ≤ 1 ) |
18 |
9 14 17
|
3jaoi |
⊢ ( ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) → ( abs ‘ 𝑍 ) ≤ 1 ) |
19 |
1 18
|
syl |
⊢ ( 𝑍 ∈ { - 1 , 0 , 1 } → ( abs ‘ 𝑍 ) ≤ 1 ) |
20 |
|
zre |
⊢ ( 𝑍 ∈ ℤ → 𝑍 ∈ ℝ ) |
21 |
|
1red |
⊢ ( 𝑍 ∈ ℤ → 1 ∈ ℝ ) |
22 |
20 21
|
absled |
⊢ ( 𝑍 ∈ ℤ → ( ( abs ‘ 𝑍 ) ≤ 1 ↔ ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ 1 ) ) ) |
23 |
|
elz |
⊢ ( 𝑍 ∈ ℤ ↔ ( 𝑍 ∈ ℝ ∧ ( 𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ - 𝑍 ∈ ℕ ) ) ) |
24 |
|
3mix2 |
⊢ ( 𝑍 = 0 → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) |
25 |
24
|
a1d |
⊢ ( 𝑍 = 0 → ( ( 𝑍 ∈ ℝ ∧ ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ 1 ) ) → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) ) |
26 |
|
nnle1eq1 |
⊢ ( 𝑍 ∈ ℕ → ( 𝑍 ≤ 1 ↔ 𝑍 = 1 ) ) |
27 |
26
|
biimpac |
⊢ ( ( 𝑍 ≤ 1 ∧ 𝑍 ∈ ℕ ) → 𝑍 = 1 ) |
28 |
27
|
3mix3d |
⊢ ( ( 𝑍 ≤ 1 ∧ 𝑍 ∈ ℕ ) → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) |
29 |
28
|
ex |
⊢ ( 𝑍 ≤ 1 → ( 𝑍 ∈ ℕ → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) ) |
30 |
29
|
adantl |
⊢ ( ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ 1 ) → ( 𝑍 ∈ ℕ → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝑍 ∈ ℝ ∧ ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ 1 ) ) → ( 𝑍 ∈ ℕ → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) ) |
32 |
31
|
com12 |
⊢ ( 𝑍 ∈ ℕ → ( ( 𝑍 ∈ ℝ ∧ ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ 1 ) ) → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) ) |
33 |
|
elnnz1 |
⊢ ( - 𝑍 ∈ ℕ ↔ ( - 𝑍 ∈ ℤ ∧ 1 ≤ - 𝑍 ) ) |
34 |
|
1red |
⊢ ( 𝑍 ∈ ℝ → 1 ∈ ℝ ) |
35 |
|
lenegcon2 |
⊢ ( ( 1 ∈ ℝ ∧ 𝑍 ∈ ℝ ) → ( 1 ≤ - 𝑍 ↔ 𝑍 ≤ - 1 ) ) |
36 |
34 35
|
mpancom |
⊢ ( 𝑍 ∈ ℝ → ( 1 ≤ - 𝑍 ↔ 𝑍 ≤ - 1 ) ) |
37 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
38 |
37
|
a1i |
⊢ ( 𝑍 ∈ ℝ → - 1 ∈ ℝ ) |
39 |
|
id |
⊢ ( 𝑍 ∈ ℝ → 𝑍 ∈ ℝ ) |
40 |
38 39
|
letri3d |
⊢ ( 𝑍 ∈ ℝ → ( - 1 = 𝑍 ↔ ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ - 1 ) ) ) |
41 |
|
3mix1 |
⊢ ( 𝑍 = - 1 → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) |
42 |
41
|
eqcoms |
⊢ ( - 1 = 𝑍 → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) |
43 |
40 42
|
syl6bir |
⊢ ( 𝑍 ∈ ℝ → ( ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ - 1 ) → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) ) |
44 |
43
|
com12 |
⊢ ( ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ - 1 ) → ( 𝑍 ∈ ℝ → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) ) |
45 |
44
|
ex |
⊢ ( - 1 ≤ 𝑍 → ( 𝑍 ≤ - 1 → ( 𝑍 ∈ ℝ → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) ) ) |
46 |
45
|
adantr |
⊢ ( ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ 1 ) → ( 𝑍 ≤ - 1 → ( 𝑍 ∈ ℝ → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) ) ) |
47 |
46
|
com13 |
⊢ ( 𝑍 ∈ ℝ → ( 𝑍 ≤ - 1 → ( ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ 1 ) → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) ) ) |
48 |
36 47
|
sylbid |
⊢ ( 𝑍 ∈ ℝ → ( 1 ≤ - 𝑍 → ( ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ 1 ) → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) ) ) |
49 |
48
|
com12 |
⊢ ( 1 ≤ - 𝑍 → ( 𝑍 ∈ ℝ → ( ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ 1 ) → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) ) ) |
50 |
49
|
impd |
⊢ ( 1 ≤ - 𝑍 → ( ( 𝑍 ∈ ℝ ∧ ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ 1 ) ) → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) ) |
51 |
50
|
adantl |
⊢ ( ( - 𝑍 ∈ ℤ ∧ 1 ≤ - 𝑍 ) → ( ( 𝑍 ∈ ℝ ∧ ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ 1 ) ) → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) ) |
52 |
33 51
|
sylbi |
⊢ ( - 𝑍 ∈ ℕ → ( ( 𝑍 ∈ ℝ ∧ ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ 1 ) ) → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) ) |
53 |
25 32 52
|
3jaoi |
⊢ ( ( 𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ - 𝑍 ∈ ℕ ) → ( ( 𝑍 ∈ ℝ ∧ ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ 1 ) ) → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) ) |
54 |
53
|
imp |
⊢ ( ( ( 𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ - 𝑍 ∈ ℕ ) ∧ ( 𝑍 ∈ ℝ ∧ ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ 1 ) ) ) → ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) |
55 |
|
eltpg |
⊢ ( 𝑍 ∈ ℝ → ( 𝑍 ∈ { - 1 , 0 , 1 } ↔ ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) ) |
56 |
55
|
adantr |
⊢ ( ( 𝑍 ∈ ℝ ∧ ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ 1 ) ) → ( 𝑍 ∈ { - 1 , 0 , 1 } ↔ ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) ) |
57 |
56
|
adantl |
⊢ ( ( ( 𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ - 𝑍 ∈ ℕ ) ∧ ( 𝑍 ∈ ℝ ∧ ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ 1 ) ) ) → ( 𝑍 ∈ { - 1 , 0 , 1 } ↔ ( 𝑍 = - 1 ∨ 𝑍 = 0 ∨ 𝑍 = 1 ) ) ) |
58 |
54 57
|
mpbird |
⊢ ( ( ( 𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ - 𝑍 ∈ ℕ ) ∧ ( 𝑍 ∈ ℝ ∧ ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ 1 ) ) ) → 𝑍 ∈ { - 1 , 0 , 1 } ) |
59 |
58
|
exp32 |
⊢ ( ( 𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ - 𝑍 ∈ ℕ ) → ( 𝑍 ∈ ℝ → ( ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ 1 ) → 𝑍 ∈ { - 1 , 0 , 1 } ) ) ) |
60 |
59
|
impcom |
⊢ ( ( 𝑍 ∈ ℝ ∧ ( 𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ - 𝑍 ∈ ℕ ) ) → ( ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ 1 ) → 𝑍 ∈ { - 1 , 0 , 1 } ) ) |
61 |
23 60
|
sylbi |
⊢ ( 𝑍 ∈ ℤ → ( ( - 1 ≤ 𝑍 ∧ 𝑍 ≤ 1 ) → 𝑍 ∈ { - 1 , 0 , 1 } ) ) |
62 |
22 61
|
sylbid |
⊢ ( 𝑍 ∈ ℤ → ( ( abs ‘ 𝑍 ) ≤ 1 → 𝑍 ∈ { - 1 , 0 , 1 } ) ) |
63 |
19 62
|
impbid2 |
⊢ ( 𝑍 ∈ ℤ → ( 𝑍 ∈ { - 1 , 0 , 1 } ↔ ( abs ‘ 𝑍 ) ≤ 1 ) ) |