Step |
Hyp |
Ref |
Expression |
1 |
|
zaddablx.g |
⊢ 𝐺 = { 〈 1 , ℤ 〉 , 〈 2 , + 〉 } |
2 |
|
zex |
⊢ ℤ ∈ V |
3 |
|
addex |
⊢ + ∈ V |
4 |
|
zaddcl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 + 𝑦 ) ∈ ℤ ) |
5 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
6 |
|
zcn |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) |
7 |
|
zcn |
⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℂ ) |
8 |
|
addass |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
9 |
5 6 7 8
|
syl3an |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
10 |
|
0z |
⊢ 0 ∈ ℤ |
11 |
5
|
addid2d |
⊢ ( 𝑥 ∈ ℤ → ( 0 + 𝑥 ) = 𝑥 ) |
12 |
|
znegcl |
⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) |
13 |
|
zcn |
⊢ ( - 𝑥 ∈ ℤ → - 𝑥 ∈ ℂ ) |
14 |
|
addcom |
⊢ ( ( 𝑥 ∈ ℂ ∧ - 𝑥 ∈ ℂ ) → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) ) |
15 |
5 13 14
|
syl2an |
⊢ ( ( 𝑥 ∈ ℤ ∧ - 𝑥 ∈ ℤ ) → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) ) |
16 |
12 15
|
mpdan |
⊢ ( 𝑥 ∈ ℤ → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) ) |
17 |
5
|
negidd |
⊢ ( 𝑥 ∈ ℤ → ( 𝑥 + - 𝑥 ) = 0 ) |
18 |
16 17
|
eqtr3d |
⊢ ( 𝑥 ∈ ℤ → ( - 𝑥 + 𝑥 ) = 0 ) |
19 |
2 3 1 4 9 10 11 12 18
|
isgrpix |
⊢ 𝐺 ∈ Grp |
20 |
2 3 1
|
grpbasex |
⊢ ℤ = ( Base ‘ 𝐺 ) |
21 |
2 3 1
|
grpplusgx |
⊢ + = ( +g ‘ 𝐺 ) |
22 |
|
addcom |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
23 |
5 6 22
|
syl2an |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
24 |
19 20 21 23
|
isabli |
⊢ 𝐺 ∈ Abel |