| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcld.1 | ⊢ 𝐽  =  ( topGen ‘ ran  (,) ) | 
						
							| 2 |  | eliun | ⊢ ( 𝑦  ∈  ∪  𝑥  ∈  ℤ ( 𝑥 (,) ( 𝑥  +  1 ) )  ↔  ∃ 𝑥  ∈  ℤ 𝑦  ∈  ( 𝑥 (,) ( 𝑥  +  1 ) ) ) | 
						
							| 3 |  | elioore | ⊢ ( 𝑦  ∈  ( 𝑥 (,) ( 𝑥  +  1 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ( 𝑥 (,) ( 𝑥  +  1 ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 5 |  | eliooord | ⊢ ( 𝑦  ∈  ( 𝑥 (,) ( 𝑥  +  1 ) )  →  ( 𝑥  <  𝑦  ∧  𝑦  <  ( 𝑥  +  1 ) ) ) | 
						
							| 6 |  | btwnnz | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑥  <  𝑦  ∧  𝑦  <  ( 𝑥  +  1 ) )  →  ¬  𝑦  ∈  ℤ ) | 
						
							| 7 | 6 | 3expb | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  <  𝑦  ∧  𝑦  <  ( 𝑥  +  1 ) ) )  →  ¬  𝑦  ∈  ℤ ) | 
						
							| 8 | 5 7 | sylan2 | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ( 𝑥 (,) ( 𝑥  +  1 ) ) )  →  ¬  𝑦  ∈  ℤ ) | 
						
							| 9 | 4 8 | eldifd | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ( 𝑥 (,) ( 𝑥  +  1 ) ) )  →  𝑦  ∈  ( ℝ  ∖  ℤ ) ) | 
						
							| 10 | 9 | rexlimiva | ⊢ ( ∃ 𝑥  ∈  ℤ 𝑦  ∈  ( 𝑥 (,) ( 𝑥  +  1 ) )  →  𝑦  ∈  ( ℝ  ∖  ℤ ) ) | 
						
							| 11 |  | eldifi | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ℤ )  →  𝑦  ∈  ℝ ) | 
						
							| 12 | 11 | flcld | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ℤ )  →  ( ⌊ ‘ 𝑦 )  ∈  ℤ ) | 
						
							| 13 | 12 | zred | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ℤ )  →  ( ⌊ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 14 |  | flle | ⊢ ( 𝑦  ∈  ℝ  →  ( ⌊ ‘ 𝑦 )  ≤  𝑦 ) | 
						
							| 15 | 11 14 | syl | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ℤ )  →  ( ⌊ ‘ 𝑦 )  ≤  𝑦 ) | 
						
							| 16 |  | eldifn | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ℤ )  →  ¬  𝑦  ∈  ℤ ) | 
						
							| 17 |  | nelne2 | ⊢ ( ( ( ⌊ ‘ 𝑦 )  ∈  ℤ  ∧  ¬  𝑦  ∈  ℤ )  →  ( ⌊ ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 18 | 12 16 17 | syl2anc | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ℤ )  →  ( ⌊ ‘ 𝑦 )  ≠  𝑦 ) | 
						
							| 19 | 18 | necomd | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ℤ )  →  𝑦  ≠  ( ⌊ ‘ 𝑦 ) ) | 
						
							| 20 | 13 11 15 19 | leneltd | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ℤ )  →  ( ⌊ ‘ 𝑦 )  <  𝑦 ) | 
						
							| 21 |  | flltp1 | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  <  ( ( ⌊ ‘ 𝑦 )  +  1 ) ) | 
						
							| 22 | 11 21 | syl | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ℤ )  →  𝑦  <  ( ( ⌊ ‘ 𝑦 )  +  1 ) ) | 
						
							| 23 | 13 | rexrd | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ℤ )  →  ( ⌊ ‘ 𝑦 )  ∈  ℝ* ) | 
						
							| 24 |  | peano2re | ⊢ ( ( ⌊ ‘ 𝑦 )  ∈  ℝ  →  ( ( ⌊ ‘ 𝑦 )  +  1 )  ∈  ℝ ) | 
						
							| 25 | 13 24 | syl | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ℤ )  →  ( ( ⌊ ‘ 𝑦 )  +  1 )  ∈  ℝ ) | 
						
							| 26 | 25 | rexrd | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ℤ )  →  ( ( ⌊ ‘ 𝑦 )  +  1 )  ∈  ℝ* ) | 
						
							| 27 |  | elioo2 | ⊢ ( ( ( ⌊ ‘ 𝑦 )  ∈  ℝ*  ∧  ( ( ⌊ ‘ 𝑦 )  +  1 )  ∈  ℝ* )  →  ( 𝑦  ∈  ( ( ⌊ ‘ 𝑦 ) (,) ( ( ⌊ ‘ 𝑦 )  +  1 ) )  ↔  ( 𝑦  ∈  ℝ  ∧  ( ⌊ ‘ 𝑦 )  <  𝑦  ∧  𝑦  <  ( ( ⌊ ‘ 𝑦 )  +  1 ) ) ) ) | 
						
							| 28 | 23 26 27 | syl2anc | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ℤ )  →  ( 𝑦  ∈  ( ( ⌊ ‘ 𝑦 ) (,) ( ( ⌊ ‘ 𝑦 )  +  1 ) )  ↔  ( 𝑦  ∈  ℝ  ∧  ( ⌊ ‘ 𝑦 )  <  𝑦  ∧  𝑦  <  ( ( ⌊ ‘ 𝑦 )  +  1 ) ) ) ) | 
						
							| 29 | 11 20 22 28 | mpbir3and | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ℤ )  →  𝑦  ∈  ( ( ⌊ ‘ 𝑦 ) (,) ( ( ⌊ ‘ 𝑦 )  +  1 ) ) ) | 
						
							| 30 |  | id | ⊢ ( 𝑥  =  ( ⌊ ‘ 𝑦 )  →  𝑥  =  ( ⌊ ‘ 𝑦 ) ) | 
						
							| 31 |  | oveq1 | ⊢ ( 𝑥  =  ( ⌊ ‘ 𝑦 )  →  ( 𝑥  +  1 )  =  ( ( ⌊ ‘ 𝑦 )  +  1 ) ) | 
						
							| 32 | 30 31 | oveq12d | ⊢ ( 𝑥  =  ( ⌊ ‘ 𝑦 )  →  ( 𝑥 (,) ( 𝑥  +  1 ) )  =  ( ( ⌊ ‘ 𝑦 ) (,) ( ( ⌊ ‘ 𝑦 )  +  1 ) ) ) | 
						
							| 33 | 32 | eleq2d | ⊢ ( 𝑥  =  ( ⌊ ‘ 𝑦 )  →  ( 𝑦  ∈  ( 𝑥 (,) ( 𝑥  +  1 ) )  ↔  𝑦  ∈  ( ( ⌊ ‘ 𝑦 ) (,) ( ( ⌊ ‘ 𝑦 )  +  1 ) ) ) ) | 
						
							| 34 | 33 | rspcev | ⊢ ( ( ( ⌊ ‘ 𝑦 )  ∈  ℤ  ∧  𝑦  ∈  ( ( ⌊ ‘ 𝑦 ) (,) ( ( ⌊ ‘ 𝑦 )  +  1 ) ) )  →  ∃ 𝑥  ∈  ℤ 𝑦  ∈  ( 𝑥 (,) ( 𝑥  +  1 ) ) ) | 
						
							| 35 | 12 29 34 | syl2anc | ⊢ ( 𝑦  ∈  ( ℝ  ∖  ℤ )  →  ∃ 𝑥  ∈  ℤ 𝑦  ∈  ( 𝑥 (,) ( 𝑥  +  1 ) ) ) | 
						
							| 36 | 10 35 | impbii | ⊢ ( ∃ 𝑥  ∈  ℤ 𝑦  ∈  ( 𝑥 (,) ( 𝑥  +  1 ) )  ↔  𝑦  ∈  ( ℝ  ∖  ℤ ) ) | 
						
							| 37 | 2 36 | bitri | ⊢ ( 𝑦  ∈  ∪  𝑥  ∈  ℤ ( 𝑥 (,) ( 𝑥  +  1 ) )  ↔  𝑦  ∈  ( ℝ  ∖  ℤ ) ) | 
						
							| 38 | 37 | eqriv | ⊢ ∪  𝑥  ∈  ℤ ( 𝑥 (,) ( 𝑥  +  1 ) )  =  ( ℝ  ∖  ℤ ) | 
						
							| 39 |  | retop | ⊢ ( topGen ‘ ran  (,) )  ∈  Top | 
						
							| 40 | 1 39 | eqeltri | ⊢ 𝐽  ∈  Top | 
						
							| 41 |  | iooretop | ⊢ ( 𝑥 (,) ( 𝑥  +  1 ) )  ∈  ( topGen ‘ ran  (,) ) | 
						
							| 42 | 41 1 | eleqtrri | ⊢ ( 𝑥 (,) ( 𝑥  +  1 ) )  ∈  𝐽 | 
						
							| 43 | 42 | rgenw | ⊢ ∀ 𝑥  ∈  ℤ ( 𝑥 (,) ( 𝑥  +  1 ) )  ∈  𝐽 | 
						
							| 44 |  | iunopn | ⊢ ( ( 𝐽  ∈  Top  ∧  ∀ 𝑥  ∈  ℤ ( 𝑥 (,) ( 𝑥  +  1 ) )  ∈  𝐽 )  →  ∪  𝑥  ∈  ℤ ( 𝑥 (,) ( 𝑥  +  1 ) )  ∈  𝐽 ) | 
						
							| 45 | 40 43 44 | mp2an | ⊢ ∪  𝑥  ∈  ℤ ( 𝑥 (,) ( 𝑥  +  1 ) )  ∈  𝐽 | 
						
							| 46 | 38 45 | eqeltrri | ⊢ ( ℝ  ∖  ℤ )  ∈  𝐽 | 
						
							| 47 |  | zssre | ⊢ ℤ  ⊆  ℝ | 
						
							| 48 |  | uniretop | ⊢ ℝ  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 49 | 1 | unieqi | ⊢ ∪  𝐽  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 50 | 48 49 | eqtr4i | ⊢ ℝ  =  ∪  𝐽 | 
						
							| 51 | 50 | iscld2 | ⊢ ( ( 𝐽  ∈  Top  ∧  ℤ  ⊆  ℝ )  →  ( ℤ  ∈  ( Clsd ‘ 𝐽 )  ↔  ( ℝ  ∖  ℤ )  ∈  𝐽 ) ) | 
						
							| 52 | 40 47 51 | mp2an | ⊢ ( ℤ  ∈  ( Clsd ‘ 𝐽 )  ↔  ( ℝ  ∖  ℤ )  ∈  𝐽 ) | 
						
							| 53 | 46 52 | mpbir | ⊢ ℤ  ∈  ( Clsd ‘ 𝐽 ) |