Metamath Proof Explorer


Theorem zcld2

Description: The integers are a closed set in the topology on CC . (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Hypothesis recld2.1 𝐽 = ( TopOpen ‘ ℂfld )
Assertion zcld2 ℤ ∈ ( Clsd ‘ 𝐽 )

Proof

Step Hyp Ref Expression
1 recld2.1 𝐽 = ( TopOpen ‘ ℂfld )
2 1 recld2 ℝ ∈ ( Clsd ‘ 𝐽 )
3 1 tgioo2 ( topGen ‘ ran (,) ) = ( 𝐽t ℝ )
4 3 eqcomi ( 𝐽t ℝ ) = ( topGen ‘ ran (,) )
5 4 zcld ℤ ∈ ( Clsd ‘ ( 𝐽t ℝ ) )
6 restcldr ( ( ℝ ∈ ( Clsd ‘ 𝐽 ) ∧ ℤ ∈ ( Clsd ‘ ( 𝐽t ℝ ) ) ) → ℤ ∈ ( Clsd ‘ 𝐽 ) )
7 2 5 6 mp2an ℤ ∈ ( Clsd ‘ 𝐽 )