Step |
Hyp |
Ref |
Expression |
1 |
|
zclmncvs.z |
⊢ 𝑍 = ( ringLMod ‘ ℤring ) |
2 |
|
zringring |
⊢ ℤring ∈ Ring |
3 |
|
rlmlmod |
⊢ ( ℤring ∈ Ring → ( ringLMod ‘ ℤring ) ∈ LMod ) |
4 |
2 3
|
ax-mp |
⊢ ( ringLMod ‘ ℤring ) ∈ LMod |
5 |
|
rlmsca |
⊢ ( ℤring ∈ Ring → ℤring = ( Scalar ‘ ( ringLMod ‘ ℤring ) ) ) |
6 |
2 5
|
ax-mp |
⊢ ℤring = ( Scalar ‘ ( ringLMod ‘ ℤring ) ) |
7 |
|
df-zring |
⊢ ℤring = ( ℂfld ↾s ℤ ) |
8 |
6 7
|
eqtr3i |
⊢ ( Scalar ‘ ( ringLMod ‘ ℤring ) ) = ( ℂfld ↾s ℤ ) |
9 |
|
zsubrg |
⊢ ℤ ∈ ( SubRing ‘ ℂfld ) |
10 |
|
eqid |
⊢ ( Scalar ‘ ( ringLMod ‘ ℤring ) ) = ( Scalar ‘ ( ringLMod ‘ ℤring ) ) |
11 |
10
|
isclmi |
⊢ ( ( ( ringLMod ‘ ℤring ) ∈ LMod ∧ ( Scalar ‘ ( ringLMod ‘ ℤring ) ) = ( ℂfld ↾s ℤ ) ∧ ℤ ∈ ( SubRing ‘ ℂfld ) ) → ( ringLMod ‘ ℤring ) ∈ ℂMod ) |
12 |
4 8 9 11
|
mp3an |
⊢ ( ringLMod ‘ ℤring ) ∈ ℂMod |
13 |
1
|
eleq1i |
⊢ ( 𝑍 ∈ ℂMod ↔ ( ringLMod ‘ ℤring ) ∈ ℂMod ) |
14 |
12 13
|
mpbir |
⊢ 𝑍 ∈ ℂMod |
15 |
|
zringndrg |
⊢ ℤring ∉ DivRing |
16 |
15
|
neli |
⊢ ¬ ℤring ∈ DivRing |
17 |
5
|
eqcomd |
⊢ ( ℤring ∈ Ring → ( Scalar ‘ ( ringLMod ‘ ℤring ) ) = ℤring ) |
18 |
2 17
|
ax-mp |
⊢ ( Scalar ‘ ( ringLMod ‘ ℤring ) ) = ℤring |
19 |
18
|
eleq1i |
⊢ ( ( Scalar ‘ ( ringLMod ‘ ℤring ) ) ∈ DivRing ↔ ℤring ∈ DivRing ) |
20 |
16 19
|
mtbir |
⊢ ¬ ( Scalar ‘ ( ringLMod ‘ ℤring ) ) ∈ DivRing |
21 |
20
|
intnan |
⊢ ¬ ( ( ringLMod ‘ ℤring ) ∈ LMod ∧ ( Scalar ‘ ( ringLMod ‘ ℤring ) ) ∈ DivRing ) |
22 |
10
|
islvec |
⊢ ( ( ringLMod ‘ ℤring ) ∈ LVec ↔ ( ( ringLMod ‘ ℤring ) ∈ LMod ∧ ( Scalar ‘ ( ringLMod ‘ ℤring ) ) ∈ DivRing ) ) |
23 |
21 22
|
mtbir |
⊢ ¬ ( ringLMod ‘ ℤring ) ∈ LVec |
24 |
23
|
olci |
⊢ ( ¬ ( ringLMod ‘ ℤring ) ∈ ℂMod ∨ ¬ ( ringLMod ‘ ℤring ) ∈ LVec ) |
25 |
|
df-nel |
⊢ ( 𝑍 ∉ ℂVec ↔ ¬ 𝑍 ∈ ℂVec ) |
26 |
|
ianor |
⊢ ( ¬ ( ( ringLMod ‘ ℤring ) ∈ ℂMod ∧ ( ringLMod ‘ ℤring ) ∈ LVec ) ↔ ( ¬ ( ringLMod ‘ ℤring ) ∈ ℂMod ∨ ¬ ( ringLMod ‘ ℤring ) ∈ LVec ) ) |
27 |
|
elin |
⊢ ( ( ringLMod ‘ ℤring ) ∈ ( ℂMod ∩ LVec ) ↔ ( ( ringLMod ‘ ℤring ) ∈ ℂMod ∧ ( ringLMod ‘ ℤring ) ∈ LVec ) ) |
28 |
26 27
|
xchnxbir |
⊢ ( ¬ ( ringLMod ‘ ℤring ) ∈ ( ℂMod ∩ LVec ) ↔ ( ¬ ( ringLMod ‘ ℤring ) ∈ ℂMod ∨ ¬ ( ringLMod ‘ ℤring ) ∈ LVec ) ) |
29 |
|
df-cvs |
⊢ ℂVec = ( ℂMod ∩ LVec ) |
30 |
1 29
|
eleq12i |
⊢ ( 𝑍 ∈ ℂVec ↔ ( ringLMod ‘ ℤring ) ∈ ( ℂMod ∩ LVec ) ) |
31 |
28 30
|
xchnxbir |
⊢ ( ¬ 𝑍 ∈ ℂVec ↔ ( ¬ ( ringLMod ‘ ℤring ) ∈ ℂMod ∨ ¬ ( ringLMod ‘ ℤring ) ∈ LVec ) ) |
32 |
25 31
|
bitri |
⊢ ( 𝑍 ∉ ℂVec ↔ ( ¬ ( ringLMod ‘ ℤring ) ∈ ℂMod ∨ ¬ ( ringLMod ‘ ℤring ) ∈ LVec ) ) |
33 |
24 32
|
mpbir |
⊢ 𝑍 ∉ ℂVec |
34 |
14 33
|
pm3.2i |
⊢ ( 𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec ) |